CHAPTER 26 QUALITY MANAGEMENT 751

Software reviews are a “filter” for the software process. That is, reviews are applied
at various points during software engineering and serve to uncover errors and de-

apwcs"

Reviews are ke fiers fects that can then be removed. Software reviews “purify” the software engineering
n ﬂ;:;,”ﬂv;”’efp’“ess activities that we have called analysis, design, and coding. Freedman and Weinberg
workflow. Too few, . . .
and the flow is “diy.” [FRE99] discuss the need for reviews this way:
Too many, and the Technical work needs reviewing for the same reason that pencils need erasers: To err is
flow slows to a ickle. human. The second reason we need technical reviews is that although people are good
gse ’"e’”‘s;‘: , at catching some of their own errors, large classes of errors escape the originator more
etermine wiic .
easily than they escape anyone else.

reviews work and Y v escape any
emphasize them. Many different types of reviews can be conducted as part of software engineer-

ing. Each has its place. An informal meeting around the coffee machine is a form of
review, if technical problems are discussed. A formal presentation of software design
to an audience of customers, management, and technical staff is also a form of re-
view. In this book, however, we focus on the formal technical review, sometimes
called a walkthrough or an inspection. A formal technical review (FTR) is the most ef-
fective filter from a quality assurance standpoint. Conducted by software engineers
(and others) for software engineers, the FTR is an effective means for uncovering er-

rors and improving software quality.

Bugs, Errors, and Defects

The goal of SQA is fo remove quality problems
in the software. These problems are referred to
by various names—"“bugs,” “faults,” “errors,” or “defects”
to name a few. Are each of these ferms synonymous, or
are there subtle differences between them?

In this book we have made a clear distinction between
an error {a quality problem found before the software is
released to end-users) and a defect (a quality problem found
only affer the software has been released to end-users?). We
make this distinction because errors and defects have very
different economic, business, psychological, and human
impact. As software engineers, we want to find and correct
as many errors as possible before the customer and/or end-
user encounter them. We want to avoid defects—because
defects (justifiably) make software people look bad.

It is important to note, however, that the temporal
Qsﬁncﬁon made between errors and defects in this book is

Lo N

not mainstream thinking. The general consensus within the
software engineering community is that defects and errors,
faults, and bugs are synonymous. That is, the point in time
that the problem was encountered has no bearing on the
term used to describe the problem. Part of the argument in
favor of this view is that it is sometimes difficult to make a
clear distinction between pre- and post-release (e.g.,
consider an incremental process used in agile development
[Chapter 4]).

Regardless of how you choose to interpret these terms,
recognize that the point in fime at which a problem is
discovered does matter and that software engineers should
try hard—very hard—to find problems before their
customers and end-users encounter them. If you have
further interest in this issue, a reasonably thorough
discussion of the terminology surrounding “bugs” can be

found at www.soﬁworedeve|opmentco/ bugs.shtm|. j

2 If software process improvement is considered, a quality problem that is propagated from one
process framework activity (e.g., modeling) to another (e.g., construction) can also be called a “de-
fect” (because the problem should have been found before a work product (e.g., a design model)

was “released” to the next activity.

752

PART FOUR MANAGING SOFTWARE PROJECTS

Detect amplifi-
cation model

enwc:‘

The primary objective
of an FIR is to find
errors before they are
passed on to another
software enginegring
activity or refeased to
the enduser.

Development step
Defects Detection

Errors from
previous step
Errors passed

fo next step

26.3.1 Cost Impact of Software Defects

The primary objective of formal technical reviews is to find errors during the process
so that they do not become defects after release of the software. The obvious bene-
fit of formal technical reviews is the early discovery of errors so that they do not prop-
agate to the next step in the software process.

A number of industry studies (by TRW, NEC, Mitre Corp., among others) indicate
that design activities introduce between 50 and 65 percent of all errors (and ulti-
mately, all defects) during the software process. However, formal review techniques
have been shown to be up to 75 percent effective JON86] in uncovering design flaws.
By detecting and removing a large percentage of these errors, the review process
substantially reduces the cost of subsequent activities in the software process.

To illustrate the cost impact of early error detection, we consider a series of relative
costs that are based on actual cost data collected for large software projects [IBM81].>
Assume that an error uncovered during design will cost 1.0 monetary unit to correct.
Relative to this cost, the same error uncovered just before testing commences will cost
6.5 units; during testing, 15 units; and after release, between 60 and 100 units.

26.3.2 Defect Amplification and Removal

A defect amplification model [IBM81] can be used to illustrate the generation and de-
tection of errors during the preliminary design, detail design, and coding steps of a
software engineering process. The model is illustrated schematically in Figure 26.2.
A box represents a software development step. During the step, errors may be inad-
vertently generated. Review may fail to uncover newly generated errors and errors
from previous steps, resulting in some number of errors that are passed through. In
some cases, errors passed through from previous steps are amplified (amplification
factor, x) by current work. The box subdivisions represent each of these characteris-
tics and the percent of efficiency for detecting errors, a function of the thoroughness
of the review.

3 Although these data are well over 20 years old, they remain applicable in a modern context.

CHAPTER 26 QUALITY MANAGEMENT 753

m Preliminary design

Defect amplifi- 0
cation—no ~
reviews

Detail design

94 Integration test

To integration
System test

Latent errors

M Preliminary design

Defect amplifi-
ceation—
reviews
conducted

Code/unit test

24

Integration test

To integration
System test

Latent errors

" %Some molodies, os doctors say, o their beginning are easy to cure but difficult to recognize . . . but imbmmi‘
me when they have not at first been recognized and treated, become easy to recognize but difficult to cure.”

Figure 26.3 illustrates a hypothetical example of defect amplification for a soft-
ware process in which no reviews are conducted. Referring to the figure, each test
step is assumed to uncover and correct 50 percent of all incoming errors without in-
troducing any new errors (an optimistic assumption). Ten preliminary design defects
are amplified to 94 errors before testing commences. Twelve latent defects are re-
leased to the field. Figure 26.4 considers the same conditions except that design and
code reviews are conducted as part of each development step. In this case, 10 initial
preliminary design errors are amplified to 24 errors before testing commences. Only

754

When we

conduct
FTRs, what are
our objectives?

The NASASATC Fomal
_ con be downlooded ot

PART FOUR MANAGING SOFTWARE PROJECTS

three latent defects exist. Recalling the relative costs associated with the discovery
and correction of errors, overall cost (with and without review for our hypothetical
example) can be established. The number of errors uncovered during each of the
steps noted in Figures 26.3 and 26.4 is multiplied by the cost to remove an error (1.5
cost units for design, 6.5 cost units before test, 15 cost units during test, and 67 cost
units after release). Using these data, the total cost for development and mainte-
nance when reviews are conducted is 783 cost units. When no reviews are con-
ducted, total cost is 2177 units—nearly three times more costly.

To conduct reviews, a software engineer must expend time and effort, and the de-
velopment organization must spend money. However, the results of the preceding
example leave little doubt that we can pay now or pay much more later. Formal tech-
nical reviews (for design and other technical activities) previde a demonstrable cost
benefit. They should be conducted.

A formal technical review is a software quality control activity performed by soft-
ware engineers (and others). The objectives of an FTR are (1) to uncover errors in
function, logic, or implementation for any representation of the software; (2) to
verify that the software under review meets its requirements; (3) to ensure that the
software has been represented according to predefined standards; (4) to achieve
software that is developed in a uniform manner; and (5) to make projects more
manageable. In addition, the FTR serves as a training ground, enabling junior en-
gineers to observe different approaches to software analysis, design, and con-
struction. The FTR also serves to promote backup and continuity because a
number of people become familiar with parts of the software that they may not
have otherwise seen.

groat as for one man to edit another man’s work.”

The FTRis actually a class of reviews that includes walkthroughs, inspections, round-
robin reviews, and other small group technical assessments of software. Each FTR is
conducted as a meeting and will be successful only if it is properly planned, controlled,
and attended. In the sections that follow, guidelines similar to those for a walkthrough
(e.g., [FRE90], [GIL93]) are presented as a representative formal technical review.

26.4.1 The Review Meeting

Regardless of the FTR format that is chosen, every review meeting should abide by

- the following constraints:

e Between three and five people (typically) should be involved in the review.

%
POINT

An FTR focuses on a

relatively small portion

of a work product.

ConaP

In some situations, it's
a good idea to have
someone other than
the producer walk
through the product
undergoing review.
This leads to a literal
interpretation of the
work product and
better error recogni
tion.

CHAPTER 26 QUALITY MANAGEMENT 755

e Advance preparation should occur but should require no more than two
hours of work for each person.

e The duration of the review meeting should be less than two hours.

Given these constraints, it should be obvious that an FTR focuses on a specific (and
small) part of the overall software. For example, rather than attempting to review an
entire design, walkthroughs are conducted for each component or small group of
components. By narrowing focus, the FTR has a higher likelihood of uncovering errors.

The focus of the FTR is on a work product (e.g., a portion of a requirements spec-
ification, a detailed component design, a source code listing for a component). The
individual who has developed the work product—the producer—informs the project
leader that the work product is complete and that a review is required. The project
leader contacts a review leader, who evaluates the product for readiness, generates
copies of product materials, and distributes them to two or three reviewers for ad-
vance preparation. Each reviewer is expected to spend between one and two hours
reviewing the product, making notes, and otherwise becoming familiar with the
work. Concurrently, the review leader also reviews the product and establishes an
agenda for the review meeting, which is typically scheduled for the next day.

The review meeting is attended by the review leader, all reviewers, and the pro-
ducer. One of the reviewers takes on the role of the recorder; that is, the individual
who records (in writing) all important issues raised during the review. The FTR be-
gins with an introduction of the agenda and a brief introduction by the producer. The
producer then proceeds to “walk through” the work product, explaining the material,
while reviewers raise issues based on their advance preparation. When valid prob-
lems or errors are discovered, the recorder notes each.

At the end of the review, all attendees of the FTR must decide whether to (1) ac-
cept the product without further modification, (2) reject the product due to severe er-
rors (once corrected, another review must be performed), or (3) accept the product
provisionally (minor errors have been encountered and must be corrected, but no
additional review will be required). The decision made, all FTR attendees complete
a sign-off, indicating their participation in the review and their concurrence with the
review team'’s findings.

26.4.2 Review Reporting and Record Keeping

During the FTR, a reviewer (the recorder) actively records all issues that have been
raised. These are summarized at the end of the review meeting a rwSsues
list is produced. In addition, a formal technical review summary @tfg dmple
review summary report answers three questions: sf}?

1. What was reviewed?
2. Who reviewed it?

3. What were the findings and conclusions?

756

ﬁbﬂﬂ‘

Don’t point out errors
harshly. One way to be
gentle is fo ask o
question that enables
the producer to
discover the error.

PART FOUR MANAGING SOFTWARE PROJECTS

The review summary report is a single page form (with possible attachments). It be-
comes part of the project historical record and may be distributed to the project
leader and other interested parties.

The review issues list serves two purposes: (1) to identify problem areas within
the product and (2) to serve as an action item checklist that guides the producer as
corrections are made. An issues list is normally attached to the summary report.

It is important to establish a follow-up procedure to ensure that items on the is-
sues list have been properly corrected. Unless this is done, it is possible that issues
raised can “fall between the cracks.” One approach is to assign the responsibility for
follow-up to the review leader.

on event in which minutes are taken and hours are wasted.”

26.4.3 Review Guidelines

Guidelines for conducting formal technical reviews must be established in advance,
distributed to all reviewers, agreed upon, and then followed. A review that is un-
controlled can often be worse that no review at all. The following represents a min-
imum set of guidelines for formal technical reviews:

1. Review the product, not the producer. An FTR involves people and egos. Con-
ducted properly, the FTR should leave all participants with a warm feeling of
accomplishment. Conducted improperly, the FTR can take on the aura of an in-
quisition. Errors should be pointed out gently; the tone of the meeting should
be loose and constructive; the intent should not be to embarrass or belittle.

2. Setan agenda and maintain it. One of the key maladies of meetings of all
types is drift. An FTR must be kept on track and on schedule. The review
leader is chartered with the responsibility for maintaining the meeting sched-
ule and should not be afraid to nudge people when drift sets in.

3. Limit debate and rebuttal. When an issue is raised by a reviewer, there may
not be universal agreement on its impact. Rather than spending time debat-
ing the question, the issue should be recorded for further discussion off-line.

4. Enunciate problem areas, but don't attempt to solve every problem noted. A re-
view is not a problem-solving session. Problem solving should be postponed
until after the review meeting.

5. Tuake written notes. It is sometimes a good idea for the recorder to make notes
on a wall board, so that wording and priorities can be assessed by other re-
viewers as information is recorded.

6. Limit the number of participants and insist upon advance preparation. Two
heads are better than one, but 14 are not necessarily better than 4. Keep the
number of people involved to the necessary minimum. However, all review

CHAPTER 26 QUALITY MANAGEMENT 757

team members must prepare in advance. Written comments should be so-
‘licited by the review leader (providing an indication that the reviewer has re-
viewed the material).

7. Develop a checklist for each product that is likely to be reviewed. A checklist
helps the review leader to structure the FTR meeting and helps each reviewer
to focus on important issues.

8. Allocate resources and schedule time for FTRs. For reviews to be effective, they
should be scheduled as a task during the software process. In addition, time
should be scheduled for the inevitable modifications that will occur as the re-
sult of an FTR.

9. Conduct meaningful training for all reviewers. To be effective all review partici-
pants should receive some formal training. The training should stress both
process-related issues and the human psychological side of reviews.

10. Review your early reviews. Debriefing can be beneficial in uncovering prob-
lems with the review process itself. The very first product to be reviewed
should be the review guidelines themselves.

e of the most beautiful compensations of lfe, that no man can sincerely fry fo help another wi

Because many variables (e.g., number of participants, type of work products, tim-
ing and length, specific review approach) have an impact on a successful review, a
software organization should experiment to determine what approach works best in
alocal context. Porter and his colleagues [POR95] provide excellent guidance for this
type of experimentation.

26.4.4 Sample-Driven Reviews

In an ideal setting, every software engineering work product would undergo a for-
mal technical review. In the real world of software projects, resources are limited and
time is short. As a consequence, reviews are often skipped, even though their value
as a quality control mechanism is recognized. Thelin and his colleagues [THE01] ad-
dress this issue when they state:

Inspections [FTRs] are only viewed efficient if many faults are found during the fault
searching part. If many faults are found in the artifacts [work products], the inspections
are necessary. If, on the other hand, only few faults are found, the inspection has been a
waste of time for several people involved in the inspections®. Moreover, software projects
which are late often decrease the time for inspection activities, which leads to a lack of

4 Of course, it can be argued that by conducting reviews we encourage producers to focus on qual-
ity, even if no errors are found.

758

CovaB

Reviews take time, but
it's time well spent.
However, if time is
short and you have no
other option, do not
dispense with reviews.
Rather, use sample-
driven reviews.

PART FOUR MANAGING SOFTWARE PROJECTS

quality. A solution would be to prioritize the resources for the inspection activities and
thereby concentrate the available resources on the artifacts that are most fault-prone.

Thelin and his colleagues suggest a sample-driven review process in which samples
of all software engineering work products are inspected to determine which work
products are most error prone. Full FTR resources are then focused only on those work
products that are likely (based on data collected during sampling) to be error-prone.

To be effective, the sample driven review process must attempt to quantify those
work products that are primary targets for full FTRs. To accomplish this, the follow-
ing steps are suggested [THEO1]:

1. Inspect a fraction a; of each software work product, i. Record the number of
faults, f; found within a;

2. Develop a gross estimate of the number of faults within work product i by
multiplying f; by 1/a;.

3. Sort the work products in descending order according to the gross estimate
of the number of faults in each.

4. Focus available review resources on those work products that have the high-
est estimated number of faults.

The fraction of the work product that is sampled must (1) be representative of the
work product as a whole and (2) large enough to be meaningful to the reviewer(s)
who does the sampling. As g, increases, the likelihood that the sample is a valid rep-
resentation of the work product also increases. However, the resources required to
do sampling also increase. A software engineering team must establish the best
value for a; for the types of work products produced.®

SAFEHOME

5 Thelin and his colleagues have conducted a detailed simulation that can assist in making this de-
termination. See [THEO1] for details.

CHAPTER 26 QUALITY MANAGEMENT 759

Doug: Lef's steal s
[Chapter 4],
pairs—wo p

minimum. Thaf wuy
than‘one set of

Over the past two decades, a small, but vocal, segment of the software engineering
community has argued that a more formal approach to software quality assurance
is required. It can be argued that a computer program is a mathematical object
[SOMO1]. A rigorous syntax and semantics can be defined for every programming
language, and a rigorous approach to the specification of software requirements
(Chapter 28) is available. If the requirements model (specification) and the program-
ming language can be represented in a rigorous manner, it should be possible to ap-
ply mathematic proof of correctness to demonstrate that a program conforms exactly
to its specifications.

Attempts to prove programs correct (Chapters 28 and 29) are not new. Dijkstra
[DY76] and Linger, Mills, and Witt [LIN79], among others, advocated proofs of pro-
gram correctness and tied these to the use of structured programming concepts
(Chapter 11).

% What steps
M are required
to perform
statistical SQA?

Statistical quality assurance reflects a growing trend throughout industry to become

more quantitative about quality. For software, statistical quality assurance implies
the following steps:

1. Information about software defects is collected and categorized.

2. An attempt is made to trace each defect to its underlying cause (e.g., non-
conformance to specifications, design error, violation of standards, poor
communication with the customer).

760

PART FOUR MANAGING SOFTWARE PROJECTS

3. Using the Pareto principle (80 percent of the defects can be traced to 20 per-
cent of all possible causes), isolate the 20 percent (the “vital few”).

4. Once the vital few causes have been identified, move to correct the problems
that have caused the defects.

This relatively simple concept represents an important step towards the creation of
an adaptive software process in which changes are made to improve those elements
of the process that introduce error.

ode has 80 percent of the errors. Find them, fix them!”

26.6.1 A Generic Example

To illustrate the use of statistical methods for software engineering work, assume
that a software engineering organization collects information on defects for a period
of one year. Some of the defects are uncovered as software is being developed. Oth-
ers are encountered after the software has been released to its end-users. Although
hundreds of different defects are uncovered, all can be tracked to one (or more) of
the following causes:

e Incomplete or erroneous specifications (IES).

e Misinterpretation of customer communication (MCC).

o Intentional deviation from specifications (IDS).

e Violation of programming standards (VPS).

e Error in data representation (EDR).

¢ Inconsistent component interface (ICI).

e Error in design logic (EDL).

. Incomplete or erroneous testing (IET).

e Inaccurate or incomplete documentation (IID).

e Error in programming language translation of design (PLT).

e Ambiguous or inconsistent human/computer interface (HCI).

e Miscellaneous (MIS).
To apply statistical SQA, the table in Figure 26.5 is built. The table indicates that
IES, MCC, and EDR are the vital few causes that account for 53 percent of all er-
rors. It should be noted, however, that IES, EDR, PLT, and EDL would be selected
as the vital few causes if only serious errors are considered. Once the vital few
causes are determined, the software engineering organization can begin correc-
tive action. For example, to correct MCC, the software developer might implement

facilitated requirements gathering techniques (Chapter 7) to improve the quality
of customer communication and specifications. To improve EDR, the developer

CHAPTER 26 QUALITY MANAGEMENT 761

Data collection
for statistical
SQA

23 What are the
core steps of
the six sigma
methodology?

Total Serious Moderate Minor

Error No. % No. % No. % No. "%
IES 205 22% 34 27% 68 18% 103 24%
MCC 156 17% 12 % 68 18% 76 17%
DS 48 5%] 1% 24 6% 23 5%
vPS 25 3% 0 0% 15 4% 10 2%
EDR 130 14% 26 20% 68 18% 36 8%
ICl 58 6% 9 7% 18 5% 31 7%
EDL 45 5% 14 1% 12 3% 19 4%
IET 95 10% 12 0% 35 9% 48 1%
D 36 4% 2 2% 20 5% 14 3%
PLT 60 % 15 12% 19 5% 26 6%
HCI 28 3% 3 2% 17 4% 8 2%
MIS 56 _6% _0 _0% _15 _4% _41 _9%

Totals 942 100% 128 100% 379 100% 435 100%

might acquire tools for data modeling and perform more stringent data design
reviews.

It is important to note that corrective action focuses primarily on the vital few. As
the vital few causes are corrected, new candidates pop to the top of the stack.

Statistical quality assurance techniques for software have been shown to pro-
vide substantial quality improvement {ART97]. In some cases, software organiza-
tions have achieved a 50 percent reduction per year in defects after applying these
techniques.

The application of the statistical SQA and the Pareto principle can be summarized
in a single sentence: Spend your time focusing on things that really matter, but first be
sure that you understand what really matters!

A comprehensive discussion of statistical SQA is beyond the scope of this book.
Interested readers should see [GOH02], [SCH98], or [KAN95].

26.6.2 Six Sigma for Software Engineering

Six Sigma is the most widely used strategy for statistical quality assurance in indus-
try today. Originally popularized by Motorola in the 1980s, the Six Sigma strategy “is
a rigorous and disciplined methodology that uses data and statistical analysis to
measure and improve a company'’s operational performance by identifying and elim-
inating ‘defects’ in manufacturing and service-related processes.” [ISI03]. The term
“six sigma” is derived from six standard deviations—3.4 instances (defects) per mil-
lion occurrences—implying an extremely high quality standard. The Six Sigma
methodology defines three core steps:

e Define customer requirements, deliverables, and project goals via well-
defined methods of customer communication.

762

PART FOUR MANAGING SOFTWARE PROJECTS

e Measure the existing process and its output to determine current quality
performance (collect defect metrics).

e Analyze defect metrics and determine the vital few causes.

If an existing software process is in place, but improvement is required, Six Sigma
suggests two additional steps:

o Improve the process by eliminating the root causes of defects.

e Control the process to ensure that future work does not reintroduce the
causes of defects.

These core and additional steps are sometimes referred to as the DMAIC (define,
measure, analyze, improve, and control) method.

If an organization is developing a software process (rather than improving an ex-
isting process), the core steps are augmented as follows:

e Design the process to (1) avoid the root causes of defects and (2) to meet
customer requirements

o Verify that the process model will, in fact, avoid defects and meet customer
requirements.

This variation is sometimes called the DMADV (define, measure, analyze, design,
and verify) method.

A comprehensive discussion of Six Sigma is best left to resources dedicated to the
subject. The interested reader should see {ISI03], [SNE03], and [PANOO].

Software reliability, unlike many other quality factors, can be measured directed and
estimated using historical and developmental data. Software reliability is defined in
statistical terms as “the probability of failure-free operation of a computer program
in a specified environment for a specified time” [MUS87]. To illustrate, program X is
estimated to have a reliability of 0.96 over eight elapsed processing hours. In other
words, if program X were to be executed 100 times and require a total of eight hours
of elapsed processing time (execution time), it is likely to operate correctly (without

failure) 96 times.

Whenever software reliability is discussed, a pivotal question arises: What is meant
by the term failure? In the context of any discussion of software quality and reliability,
failure is nonconformance to software requirements. Yet, even within this definition,
there are gradations. Failures can be only annoying or catastrophic. One failure can

Y
Yo,
POINT
Software reliability
problems con almost
always be traced to
defects in design or
implementation.

[/S)

e
POINT

It s important o note

that MTBF and related

measures are based on

CPU fime, not wall

clock time.

enwc:‘

Some aspects of avaik
ability (not discussed
here) have nothing to
do with failure. For
example, schedule
downtime (for support
functions) causes the
software to be unavait
able.

CHAPTER 26 QUALITY MANAGEMENT 763
be corrected within seconds while another requires weeks or even months to correct.
Complicating the issue even further, the correction of one failure may in fact result in
the introduction of other errors that ultimately result in other failures.

26.7.1 Measures of Reliability and Availability

Early work in software reliability attempted to extrapolate the mathematics of hardware
reliability theory (e.g., [ALV64]) to the prediction of software reliability. Most hardware-
related reliability models are predicated on failure due to wear rather than failure due to
design defects. In hardware, failures due to physical wear (e.g., the effects of tempera-
ture, corrosion, shock) are more likely than a design-related failure. Unfortunately, the
opposite is true for software. In fact, all software failures can be traced to design or im-
plementation problems; wear (Chapter 1) does not enter into the picture.

There has been debate over the relationship between key concepts in hardware
reliability and their applicability to software (e.g., [LIT89], [ROO90]). Although an ir-
refutable link has yet to be established, it is worthwhile to consider a few simple con-
cepts that apply to both system elements.

If we consider a computer-based system, a simple measure of reliability is mean-
time-between-failure (MTBF), where

MTBF = MTTF + MTTR

The acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to-repair,®
respectively.

Many researchers argue that MTBF is a far more useful measure than defects/KLOC
or defects/FP. Stated simply, an end-user is concerned with failures, not with the total
error count. Because each defect contained within a program does not have the same
failure rate, the total defect count provides little indication of the reliability of a system.

In addition to a reliability measure, we must develop a measure of availability.
Software availability is the probability that a program is operating according to re-
quirements at a given point in time and is defined as

Availability = [MTTF/(MTTF + MTTR)] X 100%

The MTBF reliability measure is equally sensitive to MTTF and MTTR. The availabil-
ity measure is somewhat more sensitive to MTTR, an indirect measure of the main-
tainability of software.

26.7.2 Software Scafety

Software safety [LEV86] is a software quality assurance activity that focuses on the
identification and assessment of potential hazards that may affect software negatively
and cause an entire system to fail. If hazards can be identified early in the software

6 Although debugging (and related corrections) may be required as a consequence of failure, in many
cases the software will work properly after a restart with no other change.

764

A worthwhile collection
of papers on softwars
safety con be found of
www.safeware-
eag.com/.

PART FOUR MANAGING SOFTWARE PROJECTS

process, software design features can be specified that will either eliminate or control
potential hazards.

L' m uy :on&aon which would cause this ship to founder. Modern sM»ing has gone hmnd *ﬁ,

A modeling and analysis process is conducted as part of software safety. Initially,
hazards are identified and categorized by criticality and risk. For example, some of
the hazards associated with a computer-based cruise control for an automobile
might be:

e Causes uncontrolled acceleration that cannot be stopped.
¢ Does not respond to depression of brake pedal (by turning off).
e Does not engage when switch is activated.

o Slowly loses or gains speed.

Once these system-level hazards are identified, analysis techniques are used to as-
sign severity and probability of occurrence.” To be effective, software must be
analyzed in the context of the entire system. For example, a subtle user input error
(people are system components) may be magnified by a software fault to produce
control data that improperly positions a mechanical device. If a set of external envi-
ronmental conditions are met (and only if they are met), the improper position of the
mechanical device will cause a disastrous failure. Analysis techniques such as fault
tree analysis [VES81], real-time logic [JAN86], or Petri net models [LEV87] can be
used to predict the chain of events that can cause hazards and the probability that
each of the events will occur to create the chain.

Once hazards are identified and analyzed, safety-related requirements can be
spéciﬁed for the software. That is, the specification can contain a list of undesirable
events and the desired system responses to these events. The role of software in
managing undesirable events is then indicated.

Although software reliability and software safety are closely related to one an-
other, it is important to understand the subtle difference between them. Software re-
liability uses statistical analysis to determine the likelihood that a software failure
will occur. However, the occurrence of a failure does not necessarily result in a haz-
ard or mishap. Software safety examines the ways in which failures result in condi-
tions that can lead to a mishap. That is, failures are not considered in a vacuum, but
are evaluated in the context of an entire computer-based system and its environ-
ment. Those readers with further interest should refer to Leveson'’s [LEV95] book on
the subject.

7 This approach is similar to the risk analysis methods described in Chapter 25. The primary differ-
ence is the emphasis on technology issues rather than project related topics.

CHAPTER 26 QUALITY MANAGEMENT 765

POINT
150 9000 describes
what must be done to
be compliant, but it
does not describe how
it must be done.

Extensive links to IS0
9000/9001 resources
con be found ot
www.tontora.ab.

ca/infoitm.

A quality assurance system may be defined as the organizational structure, responsi-
bilities, procedures, processes, and resources for implementing quality management
[ANS87]. Quality assurance systems are created to help organizations ensure their
products and services satisfy customer expectations by meeting their specifications.
1SO 9000 describes a quality assurance system in generic terms that can be applied
to any business regardless of the products or services offered.

To become registered to one of the quality assurance system models contained in
ISO 9000, a company's quality system and operations are scrutinized by third-party au-
ditors for compliance to the standard and for effective operation. Upon successful reg-
istration, a company is issued a certificate from a registration body represented by the
auditors. Semiannual surveillance audits ensure continued compliance to the standard.

ISO 9001:2000 is the quality assurance standard that applies to software engi-
neering. The standard contains 20 requirements that must be present for an effec-
tive quality assurance system. Because the ISO 9001:2000 standard is applicable to
all engineering disciplines, a special set of ISO guidelines (ISO 9000-3) have been de-
veloped to help interpret the standard for use in the software process.

The requirements delineated by ISO 9001:2000 address topics such as manage-
ment responsibility, quality system, contract review, design control, document and
data control, product identification and traceability, process control, inspection and
testing, corrective and preventive action, control of quality records, internal quality
audits, training, servicing, and statistical techniques. For a software organization to
become registered to ISO 9001:2000, it must establish policies and procedures to ad-
dress each of the requirements just noted (and others) and then be able to demon-
strate that these policies and procedures are being followed. For further information
on 1SO 9001, the interested reader should see [HOY02], [GAAO1], or [CIAO1].

=1

Establish the elements of a quality management system.
\ Develop, implement, and improve the system.

The ISO 9001:2000 Standard

The following outline defines the basic elements
of the ISO 9001:2000 standard. Comprehensive
information on the standard can be obtained from the
infernational Organization for Standardization (www.iso.ch)
and other Infernet sources (e.g., www.praxiom.com).

Define a policy that emphasizes the importance of the
system.
Document the quality system.
Describe the process.
Produce an operational manual.
Develop methods for controlling (updating) documents.
Establish methods for recordkeeping.

Support quality control and assurance.

/

8 This section, written by Michael Stovsky, has been adapted from “Fundamentals of I1SO 9000,” a

workbook developed for Essential Software Engineering, a video curriculum developed by R. S.
Pressman & Associates, Inc. Reprinted with permission.

766 PART FOUR MANAGING SOFTWARE PROJECTS

Focus on customer satisfaction.
Define a quality plan that addresses objectives,
responsibilities, and authority.

Establish review mechanisms for the quality management
system.
Identify review methods and feedback mechanisms.
Define follow-up procedures.
Identify quality resources including personnel, training,

\infrastrucfure elements.

(Promote the imporfance of quality among all stakeholders.

Define communication mechanisms among stakeholders.

N

Establish control mechanisms.
For planning.
For customer requirements.
For fechnical activities {e.g., andlysis, design, testing).
For project monitoring and management.
Define methods for remediation.
Assess quality data and mefrics.
Define approach for confinuous process and quality
improvement.

J

The SQA Plan provides a road map for instituting software quality assurance. De-
veloped by the SQA group (or the software team if a SQA group does not exist), the
plan serves as a template for SQA activities that are instituted for each software
project.

A standard for SQA plans has been published by the IEEE [IEE94]. The standard
recommends a structure that identifies (1) the purpose and scope of the plan; (2) a
description of all software engineering work products (e.g., models, documents,
source code) that fall within the purview of SQA; (3) all applicable standards and
practices that are applied during the software process; (4) SQA actions and tasks (in-
cluding reviews and audits) and their placement throughout the software process;
(5) the tools and methods that support SQA actions and tasks; (6) software configu-
ration management procedures (Chapter 27) for managing change; (7) methods for
assembling, safeguarding, and maintaining all SQA-related records; and (8) organi-
zational roles and responsibilities relative to product quality.

SOFTWARE ToOOLS

wide array of software testing tools (see Chapters 13 and

14) are often included within the SQA tools category.

Representative Tools®

ARM, developed by NASA
(satc.gsfc.nasa.gov/tools/index.html), provides

Software Quality Management

Objective: The objective of SQA tools is to
assist a project team in assessing and

Q

improving the quality of software work product.

Mechanics: Tools mechanics vary. In general, the infent
is to assess the quality of a specific work product. Note: a

9 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

CHAPTER 26 QUALITY MANAGEMENT 767

-

measures that can be used fo assess the quality of a Quality Tools and Templates, developed by iSixSigma
software requirements document. (http:/ /www.isixsigma.com/1t/), describe a wide

QPR ProcessGuide and Scorecard, developed by QPR array of useful tools and methods for quality
Software (www.qpronline.com), provides support for management.
Six Sigma and other quality management approaches. TQM Tools, developed by Bain & Company

Quality Tools Cookbook, developed by Systma and {(www.bain.com), provide useful descriptions of a
Manley (www.sytsma.com/tqmtools/tqmicolmenu. variety of management tools used for TQM and related
html), provides useful descriptions of classic quality quality management methods.
management tools such as control charts, scatter

k diagrams, affinity diagrams, and matrix diagrams. /

Software quality management is an umbrella activity—incorporating both quality
control and quality assurance—that is applied at each step in the software process.
SQA encompasses procedures for the effective application of methods and tools,
formal technical reviews, testing strategies and techniques, procedures for change
control, procedures for assuring compliance to standards, and measurement and re-
porting mechanisms.

SQA is complicated by the complex nature of software quality—an attribute of
computer programs that is defined as “conformance to explicitly and implicitly spec-
ified requirements.” But when considered more generally, software quality encom-
passes many different product and process factors and related metrics.

Software reviews are one of the most important quality control activities. Re-
views serve as filters throughout all software engineering activities, removing er-
rors while they are relatively inexpensive to find and correct. The formal technical
review is a stylized meeting that has been shown to be extremely effective in un-
covering errors.

To properly conduct software quality assurance, data about the software engi-
neering process should be collected, evaluated, and disseminated. Statistical SQA
helps to improve the quality of the product and the software process itself. Software
reliability models extend measurements, enabling collected defect data to be ex-
trapolated into projected failure rates and reliability predictions.

In summary, we recall the words of Dunn and Ullman [DUN82]: “Software quality
assurance is the mapping of the managerial precepts and design disciplines of qual-
ity assurance onto the applicable managerial and technological space of software
engineering.” The ability to ensure quality is the measure of a mature engineering
discipline. When the mapping is successfully accomplished, mature software engi-

_neering is the result.

768

PART FOUR MANAGING SOFTWARE PROJECTS

-

[ALV64] Alvin, W. H., von (ed.), Reliability Engineering, Prentice-Hall, 1964.

[ANS87] ANSI/ASQC A3-1987, Quality Systems Terminology, 1987.

[ART92] Arthur, L. J., Improving Software Quality: An Insider’s Guide to TQM, Wiley, 1992.

[ART97] Arthur, L. J., “Quantum Improvements in Software System Quality, CACM, vol. 40, no. 6,
June 1997, pp. 47-52.

[BOE81] Boehm, B., Software Engineering Economics, Prentice-Hall, 1981.

[CIAO1] Cianfrani, C. A., et al., ISO 9001:2000 Explained, 2nd ed., American Society for Quality, 2001.

[CRO79] Crosby, P., Quality Is Free, McGraw-Hill, 1979.

[DEM86] Deming, W. E., Out of the Crisis, MIT Press, 1986.

[DEM99] DeMarco, T., “Management Can Make Quality (Im)possible,” Cutter IT Summit, Boston,
April 1999.

[DU76] Dijkstra, E., A Discipline of Programming, Prentice-Hall, 1976.

[DUN82] Dunn, R., and R. Ullman, Quality Assurance for Computer Software, McGraw-Hill, 1982.

[FRE9Q] Freedman, D. P., and G. M. Weinberg, Handbook of Walkthroughs, Inspections and Tech-
nical Reviews, 3rd ed., Dorset House, 1990.

[GAAOI] Gaal, A., ISO 9001:2000 for Small Business, Saint Lucie Press, 2001.

[GIL93] Gilb, T., and D. Graham, Software Inspections, Addison-Wesley, 1993.

[GLA98] Glass, R., “Defining Quality Intuitively,” IEEE Software, May 1998, pp. 103~ 104, 107.

[GOHO2] Goh, T., V. Kuralmani, and M. Xie, Statistical Models and Control Charts for High Quality
Processes, Kluwer Academic Publishers, 2002.

[HOYO02] Hoyle, D., ISO 9000 Quality Systems Development Handbook: A Systems Engineering Ap-
proach, 4th ed., Butterworth-Heinemann, 2002.

[IBM81] “Implementing Software Inspections,” course notes, IBM Systems Sciences Institute,
IBM Corporation, 1981.

[IEE94] Software Engineering Standards, 1994, IEEE Computer Society, 1994.

[1S103] iSixSigma, LLC, “New to Six Sigma: A Guide for Both Novice and Experienced Quality
Practitioners,” 2003, available at http://www.isixsigma.com/library/content/six-sigma-
newbie.asp.

JAN86] Jahanian, E, and A. K. Mok, “Safety Analysis of Timing Properties of Real-Time Sys-
tems,” IEEE Trans. Software Engineering, vol. SE-12, no. 9, September 1986, pp. 890-904.

[JON86] Jones, T. C., Programming Productivity, McGraw-Hill, 1986.

[KAN9S5] Kan, S. H., Metrics and Models in Software Quality Enginecring, Addison-Wesley, 1995.

[LEV86] Leveson, N. G., “Software Safety: Why, What, and How,” ACM Computing Surveys,
vol. 18, no. 2, June 1986, pp. 125-163.

[LEV87] Leveson, N. G., and J. L. Stolzy, “Safety Analysis Using Petri Nets,” IEEE Trans. Software
Engineering, vol. SE-13, no. 3, March 1987, pp. 386-397.

[LEV95] Leveson, N. G., Safeware: System Safety and Computers, Addison-Wesley, 1995.

[LIN79] Linger, R., H. Mills, and B. Witt, Structured Programming, Addison-Wesiey, 1979.

[LIT89] Littlewood, B., “Forecasting Software Reliability,” in Software Reliability: Modeling and
Identification, (S. Bittanti, ed.), Springer-Verlag, 1989, pp. 141-209.

[MUS87] Musa, J. D., A. lannino, and K. Okumoto, Engineering and Managing Software with Re-
liability Measures, McGraw-Hill, 1987.

[PANOO] Pande, P., et al., The Six Sigma Way, McGraw-Hill, 2000.

[POR95] Porter, A, H. Siy, C. A. Toman, and L. G. Votta, “An Experiment to Assess the Cost-
Benefits of Code Inspections in Large Scale Software Development,” Proc. Third ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, Washington, D.C., October
1995, ACM Press, pp. 92-103.

[ROO90] Rook, J., Software Reliability Handbook, Elsevier, 1990.

[SCH98] Schulmeyer, G. C., andJ. I. McManus (eds.), Handbook of Software Quality Assurance, 3rd
ed., Prentice-Hall, 1998.

[SOMO1] Somerville, L., Software Engineering, 6th ed., Addison-Wesley, 2001.

[SNEO3] Snee, R., and R. Hoerl, Leading Six Sigma, Prentice-Hall, 2003.

[THEOI1] Thelin, T, H. Petersson, and C. Wohlin, “Sample Driven Inspections,” Proceedings Work-
shop on Inspection in Software Engineering (WISE'01), Paris, France, July 2001, pp. 81-91, can

CHAPTER 26 QUALITY MANAGEMENT 769

be downloaded from http://www.cas.mcmaster.ca/ wise/wise01/ThelinPetersson-
Wohlin.pdf.

[VES81] Veseley, W. E., et al., Fault Tree Handbook, U.S. Nuclear Regulatory Commission,
NUREG-0492, January 1981.

26.1. Some people argue that an FTR should assess programming style as well as correctness.
Is this a good idea? Why?

26.2. Is it possible to assess the quality of software if the customer keeps changing what it is
supposed to do?

26.3. Acquire a copy of ISO 9001:2000 and ISO 9000-3. Prepare a presentation that discusses
three ISO 9001 requirements and how they apply in a software context.

26.4. Earlyin this chapter we noted that “variation control is the heart of quality control.” Since
every program that is created is different from every other program, what are the variations that
we look for and how do we control them?

26.5. Can a program be correct and still not exhibit good quality? Explain.

26.6. Why is there often tension between a software engineering group and an independent
software quality assurance group? Is this healthy?

26.7. You have been given the responsibility for improving the quality of software across your
organization. What is the first thing that you should do? What’s next?

26.8. The MTBF concept for software is open to criticism. Can you think of a few reasons why?

26.9. A formal technical review is effective only if everyone has prepared in advance. How do you
recognize a review participant who has not prepared? What do you do if you're the review leader?

26.10. Quality and reliability are related concepts but are fundamentally different in a number
of ways. Discuss them.

26.11. Consider two safety critical systems that are controlled by computers. List at least three
hazards for each that can be directly linked to software failures.

26.12. Research the literature on software reliability, and write a paper that describes one
software reliability model. Be sure to provide an example.

26.13. Review the table presented in Figure 26.5 and select four vital few causes of serious and
moderate errors. Suggest corrective actions using information presented in other chapters.

26.14. Besides counting errors and defects, are there other countable characteristics of soft-
ware that imply quality? What are they, and can they be measured directly?

26.15. Can a program be correct and still not be reliable? Explain.

Books by Moriguchi (Software Excellence: A Total Quality Management Guide, Productivity Press,
1997) and Horch (Practical Guide to Software Quality Management, Artech Publishing, 1996) are
excellent management-level presentations on the benefits of formal quality assurance pro-
grams for computer software. Books by Deming [DEM86], Juran (Juran on Quality by Design, Free
Press, 1992), and Crosby ([CRO79] and Quality Is Still Free, McGraw-Hill, 1995) do not focus on
software, but are must reading for senior managers with software development responsibility.
Gluckman and Roome (Everyday Heroes of the Quality Movement, Dorset House, 1993) human-
izes quality issues by telling the story of the players in the quality process. Kan (Metrics and Mod-
els in Software Quality Engineering, Addison-Wesley, 1995) presents a quantitative view of
software quality.

770

PART FOUR MANAGING SOFTWARE PROJECTS

The 1SO 9001:2000 quality standard is discussed by Cianfani and his colleagues (ISO
9001:2000 Explained, second edition, American Society for Quality, 2001) and Gaal (ISO
9001:2000 for Small Business: Implementing Process-Approach Quality Management, St. Lucie
Press, 2001). Tingley (Comparing ISO 9000, Malcolm Baldrige, and the SEI CMM for Software,
Prentice-Hall, 1996) provides useful guidance for organizations that are striving to improve their
quality management processes.

Books by George (Lean Six Sigma, McGraw-Hill, 2002), Pande and his colleagues (The Six
Sigma Way Fieldbook, McGraw-Hill, 2001), and Pyzdek (The Six Sigma Handbook, McGraw-Hill,
2000) describe Six Sigma, a statistical quality management technique that leads to products that
have very low defect rates.

Radice (High Quality, Low Cost Software Inspections, Paradoxicon Publishers, 2002), Wiegers
(Peer Reviews in Software: A Practical Guide, Addison-Wesley, 2001), Gilb and Graham (Software In-
spection, Addison-Wesley, 1993) and Freedman and Weinberg (Handbook of Walkthroughs, Inspec-
tions and Technical Reviews, Dorset House, 1990) provide worthwhile guidelines for conducting
effective formal technical reviews.

Musa (Software Reliability Engineering: More Reliable Software, Faster Development and Test-
ing, McGraw-Hill, 1998) has written a practical guide to applied software reliability techniques.
Anthologies of important papers on software reliability have been edited by Kapur et al. (Con-
tributions to Hardware and Software Reliability Modelling, World Scientific Publishing Co., 1999),
Gritzalis (Reliability, Quality and Safety of Software-Intensive Systems, Kluwer Academic Publish-
ers, 1997), and Lyu (Handbook of Software Reliability Engineering, McGraw-Hill, 1996).

Hermann (Software Safety and Reliability, Wiley-IEEE Press, 2000), Storey (Safety-Critical Com-
puter Systems, Addison-Wesley, 1996) and Leveson [LEV95] continue to be the most compre-
hensive discussions of software safety published to date. In addition, van der Meulen (Definitions
for Hardware and Software Safety Engineers, Springer-Verlag, 2000) offers a complete com-
pendium of important concepts and terms for reliability and safety. Gartner (Testing Safety-
Related Software, Springer-Verlag, 1999) provides specialized guidance for testing safety critical
systems. Friedman and Voas (Software Assessment: Reliability Safety and Testability, Wiley, 1995)
provide useful models for assessing reliability and safety.

A wide variety of information sources on software quality management is available on the
Internet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

~

Key
CONCEPTS

SCs
SCM process
stondords

status reporting
version coatrol

WebApp (M

CHANGE
. MANAGEMENT

hange is inevitable when computer software is built. And change in-

creases the level of confusion among software engineers who are work-

ing on a pfoject. Confusion arises when changes are not analyzed before
they are made, recorded before they are implemented, reported to those with a
need to know, or controlled in a manner that will improve quality and reduce er-
ror. Babich [BAB86] discusses this when he states:

The art of coordinating software development to minimize . . . confusion is called con-
figuration management. Configuration management is the art of identifying, organiz-
ing, and controlling modifications to the software being built by a programming team.
The goal is to maximize productivity by minimizing mistakes.

Change management, more commonly called software configuration manage-
ment (SCM or CM), is an umbrella activity that is applied throughout the software
process. Because change can occur at any time, SCM activities are developed to
(1) identify change, (2) control change, (3) ensure that change is being properly
implemented, and (4) report changes to others who may have an interest.

It is important to make a clear distinction between software support and soft-
ware configuration management. Support is a set of software engineering activi-
ties that occur after software has been delivered to the customer and put into
operation. Software configuration management is a set of tracking and control
activities that are initiated when a software engineering project begins and ter-
minate only when the software is taken out of operation.

PART FOUR MANAGING SOFTWARE PROJECTS

A primary goal of software engineering is to improve the ease with which changes
can be accommodated and reduce the amount of effort expended when changes
must be made. In this chapter, we discuss the specific actions that enable us to man-
age change.

What is the

origin of
changes that are
requested for
software?

The output of the software process is information that may be divided into three
broad categories: (1) computer programs (both source level and executable forms);
(2) work products that describe the computer programs (targeted at both technical
practitioners and users), and (3) data (contained within the program or external to
it). The items that comprise all information produced as part of the software process
are collectively called a software configuration.

If each configuration item simply led to other items, little confusion would result.
Unfortunately, another variable enters the process—change. Change may occur at any
time, for any reason. In fact, the First Law of System Engineering [BER80] states: “No
matter where you are in the system life cycle, the system will change, and the desire
to change it will persist throughout the life cycle.”

What is the origin of these changes? The answer to this question is as varied as
the changes themselves. However, there are four fundamental sources of change:

o New business or market conditions dictate changes in product requirements
or business rules.

¢ New customer needs demand modification of data produced by information
systems, functionality delivered by products, or services delivered by a
computer-based system.

e Reorganization or business growth/downsizing causes changes in project
priorities or software engineering team structure.

What are

the goals of
and the activities
performed by each
of the constitven-
cies involved in
change manage-
ment?

CHAPTER 27 CHANGE MANAGEMENT 773

e Budgetary or scheduling constraints cause a redefinition of the system or
product.

Software configuration management is a set of activities that have been devel-
oped to manage change throughout the life cycle of computer software. SCM can be
viewed as a software quality assurance activity that is applied throughout the soft-
ware process. In the sections that follow, we examine major SCM tasks and impor-
tant concepts that help us to manage change.

27.1.1 A SCM Scenario!

A typical CM operational scenario involves a project manager who is in charge of a
software group, a configuration manager who is in charge of the CM procedures and
policies, the software engineers who are responsible for developing and maintain-
ing the software product, and the customer who uses the product. In the scenario,
assume that the product is a small one involving about 15,000 lines of code being de-
veloped by a team of six people. (Note that other scenarios of smaller or larger teams
are possible but, in essence, there are generic issues that each of these projects face
concerning CM.)

At the operational level, the scenario involves various roles and tasks. For the
project manager, the goal is to ensure that the product is developed within a certain
time frame. Hence, the manager monitors the progress of development and recog-
nizes and reacts to problems. This is done by generating and analyzing reports about
the status of the software system and by performing reviews on the system.

The goals of the configuration manager are to ensure that procedures and poli-
cies for creating, changing, and testing of code are followed, as well as to make in-
formation about the project accessible. To implement techniques for maintaining
control over code changes, this manager introduces mechanisms for making official
requests for changes, for evaluating them (via.a Change Control Board that is re-
sponsible for approving changes to the software system), and for authorizing
changes. The manager creates and disseminates task lists for the engineers and ba-
sically creates the project context. Also, the manager collects statistics about com-
ponents in the software system, such as information determining which components
in the system are problematic.

For the software engineers, the goal is to work effectively. This means engineers
do not unnecessarily interfere with each other in the creation and testing of code
and in the production of supporting documents. But, at the same time, they try to
communicate and coordinate efficiently. Specifically, engineers use tools that help
build a consistent software product. They communicate and coordinate by notifying

I This section is extracted from [DAROI1]. Special permission to reproduce “Spectrum of Functional-
ity in CM Systems by Susan Dart [DARO1], © 2001 by Carnegie Mellon University is granted by the
Software Engineering Institute.

774

2N
o
POINT
There must be a
mechanism to ensure
that simultaneous
changes to the same
component are
properly fracked,
managed, and
executed.

PART FOUR MANAGING SOFTWARE PROJECTS

one another about tasks required and tasks completed. Changes are propagated
across each other’'s work by merging files. Mechanisms exist to ensure that, for
components which undergo simultaneous changes, there is some way of resolving
conflicts and merging changes. A history is kept of the evolution of all components
of the system along with a log with reasons for changes and a record of what actu-
ally changed. The engineers have their own workspace for creating, changing, test-
ing, and integrating code. At a certain point, the code is made into a baseline from
which further development continues and from which variants for other target ma-
chines are made.

The customer uses the product. Since the product is under CM control, the cus-
tomer follows formal procedures for requesting changes and for indicating bugs in
the product.

Ideally, a CM system used in this scenario should support all these roles and tasks;
that is, the roles determine the functionality required of a CM system. The project
manager sees CM as an auditing mechanism; the configuration manager sees it as a
controlling, tracking, and policy making mechanism; the software engineer sees it
as a changing, building, and access control mechanism; and the customer sees it as
a quality assurance mechanism.

| 27.1.2 Elements of a Configuration Management System

In her comprehensive white-paper on software configuration management, Susan
Dart [DARO!] identifies four important elements that should exist when a configura-
tion management system is developed:

e Component elements—a set of tools coupled within a file management system
(e.g., a database) that enable access to and management of each software
configuration item.

e Process elements—a collection of procedures and tasks that define an
effective approach to change management (and related activities) for all
constituencies involved in the management, engineering, and use of
computer software.

e Construction elements—a set of tools that automate the construction of
software by ensuring that the proper set of validated components {i.e., the
correct version) has been assembled.

e Human elements—to implement effective SCM, the software team uses a set
of tools and process features (encompassing other CM elements).

These elements (to be discussed in more detail in later sections) are not mutually ex-
clusive. For example, component elements work in conjunction with construction el-
ements as the software process evolves. Process elements guide many human
activities that are related to SCM and might therefore be considered human elements
as well.

Gnvm:’ |

Most software changes
are justified, so

there’s no point in
comploining about
them. Rather, be
certain that you have
mechanisms in place
to handle them.

%
e,
POINT

A software engineering
work product becomes
a baseline only affer it
has been reviewed and
approved.

€

Be sure that the
project database is
maintained in @
centralized, controlled
location.

CHAPTER 27 CHANGE MANAGEMENT 775

27.1.3 Baselines

Change is a fact of life in software development. Customers want to modify require-
ments. Developers want to modify the technical approach. Managers want to mod-
ify the project strategy. Why all this modification? The answer is really quite simple.
As time passes, all constituencies know more (about what they need, which ap-
proach would be best, how to get it done and still make money). This additional
knowledge is the driving force behind most changes and leads to a statement of fact
that is difficult for many software engineering practitioners to accept: Most changes
are justified’

A baseline is a software configuration management concept that helps us to con-
trol change without seriously impeding justifiable change. The IEEE (IEEE Std. No.
610.12-1990) defines a baseline as:

A specification or product that has been formally reviewed and agreed upon, that there-
after serves as the basis for further development, and that can be changed only through
formal change control procedures.

Before a software configuration item becomes a baseline, change may be made
quickly and informally. However, once a baseline is established, we figuratively pass
through a swinging one-way door. Changes can be made, but a specific, formal pro-
cedure must be applied to evaluate and verify each change.

In the context of software engineering, a baseline is a milestone in the develop-
ment of software. A baseline is marked by the delivery of one or more software con-
figuration items that have been approved as a consequence of a formal technical
review (Chapter 26). For example, the elements of a design model have been docu-
mented and reviewed. Errors are found and corrected. Once all parts of the model
have been reviewed, corrected, and then approved, the design model becomes a
baseline. Further changes to the program architecture (documented in the design
model) can be made only after each has been evaluated and approved. Although
baselines can be defined at any level of detail, the most common software baselines
are shown in Figure 27.1.

The progression of events that lead to a baseline is also illustrated in Figure 27.1.
Software engineering tasks produce one or more SClIs. After SCIs are reviewed and
approved, they are placed in a project database (also called a project library or soft-
ware repository and discussed in Section 27.2). When a member of a software team
wants to make a modification to a baselined SCI, it is copied from the project data-
base into the engineer’s private workspace. However, this extracted SCI can be mod-
ified only if SCM controls (discussed later in this chapter) are followed. The arrows
in Figure 27.1 illustrate the modification path for a baselined SCI.

27.1.4 Software Configuration Items

A software configuration item is information that is created as part of the software en-
gineering process. In the extreme, a SCI could be considered to be a single section of

776

PART FOUR MANAGING SOFTWARE PROJECTS

Ficure 27.1

Baselined SCIs
and the
project
database

Modified
/ \J\ I Project database
Approved
Software Formal il
= engineering — rechmcal —>‘
tasks reviews
® Stored
Extrocfed
coniro]s
BASELINES:

System Specification
Software Requirements
Design Specification
Source Code
Test Plans/Procedures/Data
Operational System

a large specification or one test case in a large suite of tests. More realistically, a SCl is
a document, a entire suite of test cases, or a named program component (e.g., a C++
function or a Java applet).

In addition to the SCIs that are derived from software work products, many soft-
ware engineering organizations also place software tools under configuration control.
That is, specific versions of editors, compilers, browsers, and other automated tools
are “frozen” as part of the software configuration. Because these tools were used to
produce documentation, source code, and data, they must be available when changes
to the software configuration are to be made. Although problems are rare, it is possi-
ble that a new version of a tool (e.g., a compiler) might produce different results than
the original version. For this reason, tools, like the software that they help to produce,
can be baselined as part of a comprehensive configuration management process.

In reality, SCIs are organized to form configuration objects that may be cataloged in
the project database with a single name. A configuration object has a name, attributes,
and is “connected” to other objects by relationships. Referring to Figure 27.2, the con-
figuration objects, DesignSpecification, DataModel, ComponentN, SourceCode
and TestSpecification are each defined separately. However, each of the objects is re-

Jlated to the others as shown by the arrows. A curved arrow indicates a compositional

relation. That is, DataModel and ComponentN are part of the object DesignSpeci-
fication. A double-headed straight arrow indicates an interrelationship. If a change
were made to the SourceCode object, the interrelationships enable a software engi-
neer to determine what other objects (and SCIs) might be affected.?

2 These relationships are defined within the database. The structure of the database (repository) is
discussed in greater detail in Section 27.2.

CHAPTER 27 CHANGE MANAGEMENT 777

Configuration
objects

In the early days of software engineering, software configuration items were main-
tained as paper documents (or punched computer cards!), placed in file folders or
three-ring binders, and stored in metal cabinets. This approach was problematic for
many reasons: (1) finding a configuration item when it was needed was often diffi-
cult; (2) determining which items were changed, when and by whom was often chal-
lenging; (3) constructing a new version of an existing program was time consuming
and error-prone; (4) describing detailed or complex relationships between configu-
ration items was virtually impossible.

Today, SCIs are maintained in a project database or repository. Webster’s Dic-
tionary defines the word repository as “any thing or person thought of as a center of
accumulation or storage.” During the early history of software engineering, the
repository was indeed a person—the programmer who had to remember the loca-
tion of all information relevant to a software project, who had to recall information
that was never written down, and reconstruct information that had been lost. Sadly,
using a person as “the center for accumulation and storage” (although it conforms
to Webster’s definition) does not work very well. Today, the repository is a “thing”"—
a database that acts as the center for both accumulation and storage of software en-
gineering information. The role of the person (the software engineer) is to interact
with the repository using tools that are integrated with it.

27.2.1 The Role of the Repository

The SCM repository is the set of mechanisms and data structures that allow a software
team to manage change in an effective manner. It provides the obvious functions of a

778

What

functions are
implemented by a
SCM repository?

Exomples of
commercially avadable
repositories can be
obtained ot
www.softwarehp
.com/products/
SCMGR or
otn.orade.com/
docomentation/

repository.himl.

PART FOUR MANAGING SOFTWARE PROJECTS

database management system, but in addition, the repository performs or precipitates
the following functions [FOR89]:

o Data integrity includes functions to validate entries to the repository, ensure
consistency among related objects, and automatically perform “cascading”
modifications when a change to one object demands some change to objects
related to it.

e Information sharing provides a mechanism for sharing information among
multiple developers and between multiple tools, manages and controls
multiuser access to data, and locks or unlocks objects so that changes are
not inadvertently overlaid on one another.

o Tool integration establishes a data model that can be accessed by many
software engineering tools, controls access to the data, and performs appro-
priate configuration management functions.

e Data integration provides database functions that allow various SCM tasks to
be performed on one or more SClIs.

e Methodology enforcement defines an entity-relationship model stored in the
repository that implies a specific process model for software engineering; at a
minimum, the relationships and objects define a set of steps that must be
conducted to build the contents of the repository.

e Document standardization is the definition of objects in the database that
leads directly to a standard approach for the creation of software engineering
documents.

To achieve these functions, the repository is defined in terms of a meta-model.
The meta-model determines how information is stored in the repository, how data
can be accessed by tools and viewed by software engineers, how well data security
and integrity can be maintained, and how easily the existing model can be extended
to accommodate new needs. For further information, the interested reader should
see [SHA95] and [GRI95].

27.2.2 General Features and Content

The features and content of the repository are best understood by looking at it from
two perspectives: what is to be stored in the repository and what specific services are
provided by the repository. A detailed breakdown of types of representations, docu-
ments, and work products that are stored in the repository is presented in Figure 27.3.
A robust repository provides two different classes of services: (1) the same types
of services that might be expected from any sophisticated database management
system and (2) services that are specific to the software engineering environment.
A repository that serves a software engineering team should (1) integrate with or
directly support process management functions; (2) support specific rules that gov-
ern the SCM function and the data maintained within the repository; (3) provide an

CHAPTER 27 CHANGE MANAGEMENT 779

FiGure 27.3

Content of the
repository

%N
o,
POINT
The repository must be
capable of maintaining
SCls related to many
different versions of
the software. More
important, it must
provide the
mechanisms for
assembling these SCls
info a version-specific
configuration.

Use<cases
Analysis model
Scenario-based diagrams
Flow-oriented diagrams

Class-based diagrams

Behavioral diagrams
Design model

Architectural diagrams

Interface diagrams

Component-level diagrams
Technical metrics

Source code
Obsject code
System build instructions

Business rules

Business functions
Organization structure
Information architecture

Test cases
Test scripts
Test results
Quality metrics

Project estimates
Project schedule
SCM requirements

Change requests

Change reports
SQA requirements
Project reports/audit reports
Project metrics

Project plan

SCM/SQA plan

System spec
Requirements spec
Design document

Test plan and procedure
Support documents
User manual

interface to other software engineering tools; and (4) accommodate storage of so-
phisticated data objects (e.g., text, graphics, video, audio).

27.2,.3 SCM Features

To support SCM, the repository must have a tool set that provides support for the fol-
lowing features:

Versioning. As a project progresses, many versions (section 27.3.2) of individual
work products will be created. The repository must be able to save all of these ver-
sions to enable effective management of product releases and to permit developers
to go back to previous versions during testing and debugging.

The repository must be able to control a wide variety of object types, including
text, graphics, bit maps, complex documents, and unique objects like screen and re-
port definitions, object files, test data, and results. A mature repository tracks ver-
sions of objects with arbitrary levels of granularity; for example, a single data
definition or a cluster of modules can be tracked.

Dependency tracking and change management. The repository manages a
wide variety of relationships among the configuration objects stored in it. These in-
clude relationships between enterprise entities and processes, among the parts of an
application design, between design components and the enterprise information ar-
chitecture, between design elements and other work products, and so on. Some of

780

2 Whot

W’ questions
should the SCM
process be
designed to
answer?

PART FOUR MANAGING SOFTWARE PROJECTS

these relationships are merely associations, and some are dependencies or manda-
tory relationships.

The ability to keep track of all of these relationships is crucial to the integrity of
the information stored in the repository and to the generation of work products
based on it, and it is one of the most important contributions of the repository con-
cept to the improvement of the software development process. For example, if a UML
class diagram is modified, the repository can detect whether related classes, inter-
face definitions, and code components also require modification and can bring af-
fected SClIs to the developer’s attention.

Requirements tracing. This special function provides the ability to track all the
design and construction components and deliverables that result from a specific re-
quirements specification (forward tracing). In addition, it provides the ability to iden-
tify which requirement generated any given work product (backward tracing).

Configuration management. A configuration management facility keeps track of a
series of configurations representing specific project milestones or production releases.

Audit trails. An audit trail establishes additional information about when, why,
and by whom changes are made. Information about the source of changes can be
entered as attributes of specific objects in the repository.

The software configuration management process defines a series of tasks that have
four primary objectives: (1) to identify all items that collectively define the software
configuration; (2) to manage changes to one or more of these items; (3) to facilitate
the construction of different versions of an application; and (4) to ensure that soft-
ware quality is maintained as the configuration evolves over time.

A process that achieves these objectives need not be bureaucratic and ponderous,
but it must be characterized in a manner that enables a software team to develop an-
swers to a set of complex questions:

e How does a software team identify the discrete elements of a software
configuration?

e How does an organization manage the many existing versions of a program
(and its documentation) in a manner that will enable change to be accommo-
dated efficiently?

e How does an organization control changes before and after software is
released to a customer?

e Who has responsibility for approving and ranking changes?
e How can we ensure that changes have been made properly?

e What mechanism is used to appraise others of changes that are made?

CHAPTER 27 CHANGE MANAGEMENT 781

Ficure 27.4

Layers of the
SCM process

Software

Vm.n

These questions lead us to the definition of five SCM tasks—identification, version
control, change control, configuration auditing, and reporting-—illustrated in
Figure 27.4.

Referring to the figure, SCM tasks can be viewed as concentric layers. SCIs flow
outward through these layers throughout their useful life, ultimately becoming part
of the software configuration of one or more versions of an application or system.
As an SCI moves through a layer, the actions implied by each SCM process layer may
or may not be applicable. For example, when a new SCl is created, it must be iden-
tified. However, if no changes are requested for the SCI, the change control layer
does not apply. The SCl is assigned to a specific version of the software (version con-
trol mechanisms come into play). A record of the SCI (its name, creation date, ver-
sion designation, etc.) is maintained for configuration auditing purposes and
reported to those with a need to know. In the sections that follow, we examine each
of these SCM process layers in more detail.

27.3.1 Identification of Objects in the Software Configuration

To control and manage software configuration items, each should be separately
named and then organized using an object-oriented approach. Two types of ob-
jects can be identified [CHO89]: basic objects and aggregate objects.® A basic ob-
ject is a unit of information that has been created by a software engineer during
analysis, design, code, or test. For example, a basic object might be a section of a
requirements specification, part of a design model, source code for a component,

3 The concept of an aggregate object [GUS89] has been proposed as a mechanism for representing
a complete version of a software configuration.

782

%
e,
POINT
The interrelationships
established for
configuration objects
allow a software
engineer to assess the
impact of change.

ﬂnwc:’

Even if the project
database provides the
ability to establish these
relotionships, they are
time-consuming fo
establish and difficult to
keep up-todote.
Although very useful for
impact analysis, they
are not essential for
overalf change
mangagement.

o
e,
POINT
A “make” facility
enables o software
engineer to extract all
refevant configuration
objects and construct @
specific version of the

software.

PART FOUR MANAGING SOFTWARE PROJECTS
or a suite of test cases that are used to exercise the code. An aggregate object is a
collection of basic objects and other aggregate objects. Referring to Figure 27.2,
DesignSpecification is an aggregate object. Conceptually, it can be viewed as a
named (identified) list of pointers that specify basic objects such as DataModel
and ComponentN. X

Each object has a set of distinct features that identify it uniquely: a name, a de-
scription, a list of resources, and a “realization.” The object name is a character string
that identifies the object unambiguously. The object description is a list of data items
that identify the SCI type (e.g., model element, program, data) represented by the ob-
ject, a project identifier, and change and/or version information.

Configuration object identification can also consider the relationships that exist
between named objects. For example, using the simple notation

Class diagram <part-of> analysis model;

Analysis model <part-of> requirements specification;

we create a hierarchy of SCIs.
In many cases, objects are interrelated across branches of the object hierarchy.
These cross structural relationships can be represented in the following manner:

data model <interrelated>data flow model;

data model <interrelated>test case clags m:

In the first case, the interrelationship is between a composite object, while the sec-
ond relationship is between an aggregate object (DataModel) and a basic object
(TestCaseClassM).

The identification scheme for configuration objects must recognize that objects
evolve throughout the software process. Before an object is baselined, it may change
many times, and even after a baseline has been established, changes may be quite
frequent.

27.3.2 Version Control

Version control combines procedures and tools to manage different versions of con-
figuration objects that are created during the software process. A version control sys-
tem implements or is directly integrated with four major capabilities: (1) a project
database (repository) that stores all relevant configuration objects; (2) a version man-
agement capability that stores all versions of a configuration object (or enables any
version to be constructed using differences from past versions); (3) a make facility
that enables the software engineer to collect all relevant configuration objects and
construct a specific version of the software. In addition, version control and change
control systems often implement an issues tracking (also called bug tracking) capa-

CHAPTER 27 CHANGE MANAGEMENT 783

bility that enables the team to record and track the status of all outstanding issues
associated with each configuration object.

u change for the better, is accompanied by drawbacks and dismmﬁnns.'

A number of version control systems establish a change set—a collection of all
changes (to some baseline configuration) that are required to create a specific ver-
sion of the software. Dart [DAR91] notes that a change set “captures all changes to
all files in the configuration along with the reason for changes and details of who
made the changes and when.”

A number of named change sets can be identified for an application or system.
This enables a software engineer to construct a version of the software by specify-
ing the change sets (by name) that must be applied to the baseline configuration. To
accomplish this, a system modeling approach is applied. The system model contains:
(1) a template that includes a component hierarchy and a “build order” for the com-
ponents that describes how the system must be constructed, (2) construction rules,
and (3) verification rules.*

A number of different automated approaches to version control have been pro-
posed over the last two decades. The primary difference in approaches is the so-
phistication of the attributes that are used to construct specific versions and variants

of a system and the mechanics of the process for construction.

The use of tools to achieve version control is
essential for effective change management. The
Concurrent Versions System (CVS) is a widely used tool for
version control. Originally designed for source code, but
useful for any text-based file, the CVS system
(1) establishes a simple repository, {2) maintains all
versions of a file in a single named file by storing only the
differences between progressive versions of the originad
file, and (3) protects against simultaneous changes fo a file
by establishing different directories for each developer,
thus insulafing one from another. CVS merges changes
when each developer completes her work.

It is important to note that CVS is not a “build” system;
@t is, it does not construct a specific version of the

Q

The Concurrent Versions System (CVS)

SorTwaRE TooLs

software. Other tools {e.g., Makefile) must be integrated
with CVS to accomplish this. CVS does not implement a
change control process (e.g., change requests, change
reports, bug tracking).

Even with these limitations, CVS “is a dominant open-
source network-transparent version control system [that] is
useful for everyone from individual developers to large,
distributed teams” [CVS02]. Its client/server architecture
allows users to access files via Internet connections, and its
open source philosophy makes it available on most
popular platforms.

CVS is available at no cost for Windows, Macintesh,
and UNIX environments. See www.cvshome.org for further

details. j

4 Itis also possible to query the system model to assess how a change in one component will impact

other components.

784

@
POINT
it should be noted that
a number of change
requests moy be
combined fo result in o
single ECO and that
ECOs typically result in
changes to multiple
configuration objects.

euma‘

Confusion leads to
erors—some of them
very serious. Access
and synchronization
control avoid confusion.
Use version and change
control tools that
implement both.

PART FOUR MANAGING SOFTWARE PROJECTS

27.3.3 Change Control

The reality of change control in a modern software engineering context has been
summed up beautifully by James Bach [BAC98]:

Change control is vital. But the forces that make it necessary also make it annoying. We
worry about change because a tiny perturbation in the code can create a big failure in the
product. But it can also fix a big failure or enable wonderful new capabilities. We worry
about change because a single rogue developer could sink the project; yet brilliant ideas
originate in the minds of those rogues, and a burdensome change control process could
effectively discourage them from doing creative work.

Bach recognizes that we face a balancing act. Too much change control, and we cre-
ate problems. Too little, and we create other problems.

pwam order amid change and to preserve change amid order.”

For a large software engineering project, uncontrolled change rapidly leads to
chaos. For such projects, change control combines human procedures and auto-
mated tools. The change control process is illustrated schematically in Figure 27.5.
A change request is submitted and evaluated to assess technical merit, potential side
effects, overall impact on other configuration objects and system functions, and the
projected cost of the change. The results of the evaluation are presented as a change
report, which is used by a change control authority (CCA)—a person or group who
makes a final decision on the status and priority of the change. An engineering
change order (ECO) is generated for each approved change. The ECO describes the
change to be made, the constraints that must be respected, and the criteria for re-
view and audit.

The object(s) to be changed can be placed in a directory that is controlled solely
by the software engineer making the change. A version control system (see the CVS
sidebar) updates the original file once the change has been made. As an alternative,
the object(s) to be changed can be “checked out” of the project database (repository),
the change is made, and appropriate SQA activities are applied. The object(s) is (are)
then “checked in” to the database and appropriate version control mechanisms (Sec-
tion 27.3.2) are used to create the next version of the software.

These version control mechanisms, integrated within the change control process,
implement two important elements of change management—access control and
synchronization control. Access control governs which software engineers have the
authority to access and modify a particular configuration object. Synchronization
control helps to ensure that parallel changes, performed by two different people,
don't overwrite one another [HAR89].

Some readers may begin to feel uncomfortable with the level of bureaucracy im-
plied by the change control process description shown in Figure 27.5. This feeling is

CHAPTER 27 CHANGE MANAGEMENT 785

Ficure 27.5

The change
control process

Coval

Opt for a bit more
change control than
you think you'll need.
It’s likely that too
much will be the right
omount,

Need for change is recognized
Change request from user
Developer evaluates
Change report is generated
Change control authority decides
Request is queued for action, ECO generated \Chonge request is denied
Assign individuals to configuration cbjects User is informed
“Check out” configuration objects (items)
Make the change
Review (audit) the change
“Check in” the configuration items that have been changed
Establish a baseline for testing
Perform quality assurance and testing activities
“Promote” changes for inclusion in next release (revision)
Rebuild appropriate version of software
Review (audit) the change to all configuration items

Include changes in new version

Distribute the new version

not uncommon. Without proper safeguards, change control can retard progress and
create unnecessary red tape. Most software developers who have change control
mechanisms (unfortunately, many have none) have created a number of layers of
control to help avoid the problems alluded to here.

Prior to an SCI becoming a baseline, only informal change control need be applied.
The developer of the configuration object (SCI) in question may make whatever
changes are justified by project and technical requirements (as long as changes do
not affect broader system requirements that lie outside the developer’s scope of
work). Once the object has undergone formal technical review and has been

786 PART FOUR MANAGING SOFTWARE PROJECTS

approved, a baseline can be created.® Once a SCI becomes a baseline, project level
change control is implemented. Now, to make a change, the developer must gain
approval from the project manager (if the change is “local”) or from the CCA if the
change affects other SCIs. In some cases, formal generation of change requests,
change reports, and ECOs is dispensed with. However, assessment of each change
is conducted, and all changes are tracked and reviewed.

When the software product is released to customers, formal change control is in-
stituted. The formal change control procedure has been outlined in Figure 27.5.

Tevituble, except for vending machines.” i

The change control authority plays an active role in the second and third layers of
control. Depending on the size and character of a software project, the CCA may be
composed of one person—the project manager—or a number of people (e.g., repre-
sentatives from software, hardware, database engineering, support, marketing). The
role of the CCA is to take a global view, that is, to assess the impact of change be-
yond the SCI in question. How will the change affect hardware? How will the change
affect performance? How will the change modify the customer’s perception of the
product? How will the change affect product quality and reliability? These and many
other questions are addressed by the CCA.

SAFEHOME

_The scene: Doug Miller’s office as Doug: | know, but this is bigger and more sible

Bware pmpdbegms as | recall . . . ‘
g Miliar {manager of the SafeHome Vinod (nodding): We 9°' killed by Umrdhd
ing team) and Vinod Roman, Jamie changes on the home Iighhng control project .
members of the product software remember the delays that . .
i Doug (frowning): A mghtmore that I‘d prekr;

relive.

5 ’ but we've got fo falk about Jamie: So what do we do. .
" Doug: As | see it, three things. First we have fo
Hardly. Marketing called this develop—or borrow—a change control process.

mahd ﬂloughts Nothing major, Jamie: You mean how people request changest

Vinod: Yeah, but also how we evaluate the change;

We've boen pmﬂy mformal about change decide when fo do it (if that's what we decide), and
on i we keep records of what's affected by the change

5 A baseline can be created for other reasons as well. For example, when “daily builds” are created,
all components checked in by a given time become the baseline for the next day’s work.

CHAPTER 27 CHANGE MANAGEMENT 787

e got fo get a really good SCM fool

e Jamie: Uh, Dougyou
for-all of our work Doug (smiling): Thi

- follow the change mar
is context, and most tools—no matter what

/ 27.3.4 Configuration Audit

#: What are
"® the primary
questions that
we ask during

a configuration
audit?

Identification, version control, and change control help the software developer to
maintain order in what would otherwise be a chaotic and fluid situation. However,
even the most successful control mechanisms track a change only until an ECO is
generated. How can we ensure that the change has been properly implemented?
The answer is twofold: (1) formal technical reviews and (2) the software configura-
tion audit.

The formal technical review (presented in detail in Chapter 26) focuses on the
technical correctness of the configuration object that has been modified. The re-
viewers assess the SCI to determine consistency with other SCls, omissions, or po-
tential side effects. A formal technical review should be conducted for all but the
most trivial changes.

A software configuration audit complements the formal technical review by ad-
dressing the following questions:

1. Has the change specified in the ECO been made? Have any additional modifi-
cations been incorporated?

Has a formal technical review been conducted to assess technical correctness?

Has the software process been followed, and have software engineering
standards been properly applied?

4. Has the change been “highlighted” in the SCI? Have the change date and
change author been specified? Do the attributes of the configuration object
reflect the change?

5. Have SCM procedures for noting the change, recording it, and reporting it
been followed?

6. Have all related SCIs been properly updated?

In some cases, the audit questions are asked as part of a formal technical review.
However, when SCM is a formal activity, the SCM audit is conducted separately by
the quality assurance group. Such formal configuration audits also ensure that the
correct SCIs (by version) have been incorporated into a specific build and that all
documentation is up-to-date and consistent with the version that has been built.

788 PART FOUR MANAGING SOFTWARE PROJECTS

0

27.3.5 Status Reporting

Configuration status reporting (sometimes called status accounting) is a SCM task that

zs:i%; fozeerr.;/ answers the following questions: (1) What happened? (2) Who did it? (3) When did it
configuration object happen? (4) What else will be affected?

and keep it up-to-dote.
When a change is
made, be sure that
everyone on the list is
notified.

The flow of information for configuration status reporting (CSR) is illustrated in
Figure 27.5. Each time a SClI is assigned new or updated identification, a CSR entry
is made. Each time a change is approved by the CCA (i.e., an ECO is issued), a CSR
entry is made. Each time a configuration audit is conducted, the results are reported
as part of the CSR task. Output from CSR may be placed in an on-line database or
Web site, so that software developers or maintainers can access change information
by keyword category. In addition, a CSR report is generated on a regular basis and is
intended to keep management and practitioners appraised of important changes.

SOFTWARE TOOLS

SCM Support

Obijective: SCM tools provide support to one

.
or more of the process activities discussed in

Section 27.3

PVCS, distributed by Merant (www.merant.com), provides
a full set of SCM tools that are applicable for both
conventional software and WebApps.

SourceForge, distributed by VA Software (sourceforge.net),

Mechanics: Most modern SCM tools work in conjuncfion provides version management, build capabilities,

with a repository (a database system) and provide
mechanisms for identification, version and change control,
auditing, and reporting.

Representative Tools®

CCC/Harvest, distributed by Computer Associates
(www.cai.com), is a multiplatform SCM system.

ClearCase, developed by Rational (www.rational.com),
provides a family of SCM functions.

Concurrent Versions System (CVS), an open source tool
(www.cvshome.org), is one of the indusiry’s most widely

\ used version control systems (see earlier sidebar).

issue/bug tracking, and many other management
features.

SurroundSCM, developed by Seapine Software
{www.seapine.com), provides complete change
management capabilities.

Vesta, distributed by Compac {www.vestasys.org), is a
public domain SCM system that can support both small
(<10 KLOC) and large {10,000 KLOC) projects.

A comprehensive list of commercial SCM fools and
environments can be found at www.cmtoday.com/ yp/
commercial.html.

In Part 3 of this book, we discussed the special nature of Web applications and the Web
engineering process that is required to build them. Among the many characteristics that
differentiate WebApps from conventional software is the ubiquitous nature of change.

Web engineering uses an iterative, incremental process model (Chapter 16) that ap-
plies many principles derived from agile software development (Chapter 4). Using this

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

3% What impact
" does uncon-
trolled change
have on a
WebApp?

CHAPTER 27 CHANGE MANAGEMENT 789

approach, an engineering team often develops a WebApp increment in a very short
time period via a customer-driven approach. Subsequent increments add additional
content and functionality, and each is likely to implement changes that lead fo en-
hanced content, better usability, improved aesthetics, better navigation, enhanced
performance, and stronger security. Therefore, in the agile world of Web engineering,
change is viewed somewhat differently.

Web engineers must embrace change, and yet a typical agile team eschews all
things that appear to be process-heavy, bureaucratic, and formal. Software configu-
ration management is often viewed (albeit incorrectly) to have these characteristics.
This seeming contradiction is remedied not by rejecting SCM principles, practices,
and tools, but rather by molding them to meet the special needs of Web engineering
projects.

27.4.1 Configuration Management Issues for WebApps

As WebApps become increasingly important to business survival and growth, the
need for configuration management grows. Why? Because without effective con-
trols, improper changes to a WebApp (recall that immediacy and continuous evolu-
tion are the dominant attributes of many WebApps) can lead to unauthorized posting
of new product information; erroneous or poorly tested functionality that frustrates
visitors to a Web site; security holes that jeopardize internal company systems; and
other economically unpleasant or even disastrous consequences.

The general strategies for software configuration management (SCM) described
in this chapter are applicable, but tactics and tools must be adapted to conform to
the unique nature of WebApps. Four issues [DAR99] should be considered when de-
veloping tactics for WebApp configuration management—content, people, scalabil-
ity, and politics.

Content. A typical WebApp contains a vast array of content—text, graphics, ap-
plets, scripts, audio/video files, forms, active page elements, tables, streaming data,
and many others. The challenge is to organize this sea of content into a rational set
of configuration objects (Section 27.1.4) and then establish appropriate configura-
tion control mechanisms for these objects.

People. Because a significant percentage of WebApp development continues to
be conducted in an ad hoc manner, any person involved in the WebApp can (and of-
ten does) create content. Many content creators have no software engineering back-
ground and are completely unaware of the need for configuration management. As
a consequence, the application grows and changes in an uncontrolled fashion.

Scalability. The techniques and controls applied to a small WebApps do not scale
upward well. It is not uncommon for a simple WebApp to grow significantly as inter-
connections with existing information systems, databases, data warehouses, and por-
tal gateways are implemented. As size and complexity grows, small changes can have

790

&% How do |

® determine
who has
responsibility for
WebApp CM?

PART FOUR MANAGING SOFTWARE PROJECTS

far-reaching and unintended affects that can be problematic. Therefore, the rigor of
configuration control mechanisms should be directly proportional to application scale.

Politics. Who “owns” a WebApp? This question is argued in companies large and
small, and its answer has a significant impact on the management and control ac-
tivities associated with WebE. In some instances Web developers are housed outside
the IT organization, creating potential communication difficulties. Dart [DAR99] sug-
gests the following questions to help understand the politics associated with WebE:

e Who assumes responsibility for the accuracy of the information on the Web
site?

e Who assures that quality control processes have been followed before infor-
mation is published to the site?

e Who is responsible for making changes?

¢ Who assumes the cost of change?

The answers to these questions help determine the people within an organization
who must adopt a configuration management process for WebApps.

27.4.2 WebApp Configuration Objects

WebApps encompass a broad range of configuration objects—content objects (e.g.,
text, graphics, images, video, audio), functional components (e.g., scripts, applets),
and interface objects (e.g.,, COM or CORBA). WebApp objects can be identified
(assigned file names) in any manner that is appropriate for the organization. How-
ever, the following conventions are recommended to ensure that cross-platform
compatibility is maintained: filenames should be limited to 32 characters in length,
mixed-case or all-caps names should be avoided, and the use of underscores in file
names should be avoided. In addition, URL references (links) within a configuration
object should always use relative paths (e.g., ../products/alarmsensors.html).

All WebApp content has format and structure. Internal file formats are dictated by
the computing environment in which the content is stored. However, rendering for-
mat (often called display format) is defined by the aesthetic style and design rules es-
tablished for the WebApp. Content structure defines a content architecture; that is, it
defines the way in which content objects are assembled to present meaningful
information to an end-user. Boiko [BOI02] defines structure as “maps that you lay
over a set of content chunks [objects] to organize them and make them accessible
to the people who need them.”

27.4.3 Content Management

Content management is related to configuration management in the sense that a con-
tent management system (CMS) establishes a process (supported by appropriate

[/
L4

POINT

The collection
subsystem
encompasses all actions
required fo create,
acquire, and/or convert
confent into a form that
can be presented on
the client side.

CHAPTER 27 CHANGE MANAGEMENT 791
tools) that acquires existing content (from a broad array of WebApp configuration
objects), structures it in a way that enables it to be presented to an end-user, and
then provides it to the client-side environment for display.

At is an aniidote o today's information frenzy.”

The most common use of content management system occurs when a dynamic
WebApp is built. Dynamic WebApps create Web pages “on-the-fly.” That is, the user
typically queries the WebApp requesting specific information. The WebApp queries a
database, formats the information accordingly, and presents it to the user. For exam-
ple, a music company provides a library of CDs for sale. When a user requests a CD or
its e-music equivalent, a database is queried, and a variety of information about the
artist, the CD {e.g., its cover image or graphics), the musicak-eontent -and sample au-

dio are all downloaded and configured into a standard content template. The restlt=—— .

ant Web page is built on the server-side and passed to the client-side browser for
examination by the end-user. A generic representation of this is shown in Figure'27.6.

In the most general sense, a CMS “configures” content for the end-user by invok-
ing three integrated subsystems: a collection subsystem, a management subsystem,
and a publishing subsystem [BOI102].

Content
management
system (CMS)

Configuration objects

| |
| |
| 1
1 1
| |
| I
| 1
i 1
1 |
| |
I
1 Database Content :
| Management i
: System 1
] I
| |
| |
1 |
| |
! I
| 1
| !
i I | l
: Templates 1
|
: HTML code | Clientside browser
: + scripts :
I
: Serverside]

792

[/
e,
POINT
The management
subsystem implements
a repository for all
content. Configuration
management is
performed within this
subsystem.

L
e,
POINT
The publishing
subsystem extracts
content from the
repository and delivers
it to clientside
browsers.

PART FOUR MANAGING SOFTWARE PROJECTS

The collection subsystem. Content is derived from data and information that
must be created or acquired by a content developer. The collection subsystem en-
compasses all actions required to create and/or acquire content, and the technical
functions that are necessary to (1) convert content into a form that can be repre-
sented by a mark-up language (e.g., HTML, XML), and (2) organize content into
packets that can be displayed effectively on the client side.

The management subsystem. Once content exists, it must be stored in a
repository, cataloged for subsequent acquisition and use, and labeled to define
(1) current status (e.g., is the content object complete or in development), (2) the
appropriate version of the content object, and (3) related content objects. There-
fore, the management subsystem implements a repository that encompasses the
following elements:

e Content database—the information structure that has been established to
store all content objects.

e Database capabilities—functions that enable the CMS to search for specific
content objects (or categories of objects), store and retrieve objects, and
manage the file structure that has been established for the content.

e Configuration management functions—the functional elements and associated
workflow that support content object identification, version control, change
management, change auditing, and reporting.

In addition to these elements, the management subsystem implements an adminis-
tration function that encompasses the metadata and rules that control the overall
structure of the content and the manner in which it is supported.

The publishing subsystem. Content must be extracted from the repository, con-
verted to a form that is amenable to publication, and formatted so that it can be
transmitted to client-side browsers. The publishing subsystem accomplishes these
tasks using a series of templates. Each template is a function that builds a publica-
tion using one of three different components [BOIO2]:

e Static elements—text, graphics, media, and scripts that require no further
processing are transmitted directly to the client-side.

e Publication services—function calls to specific retrieval and formatting
services that personalize content (using predefined rules), perform data
conversion, and build appropriate navigation links.

e External services—provide access to external corporate information infra-
structure such as enterprise data or “back-room” applications.

A content management system that encompasses each of these subsystems is appli-
cable for major Web engineering projects. However, the basic philosophy and func-
tionality associated with a CMS are applicable to all dynamic WebApps.

CHAPTER 27 CHANGE MANAGEMENT

793

Content Management

Q

incorporated into WebApps.

Objective: To assist software engineers and
content developers in managing content that is

Mechanics: Tools in this category enable Web engineers
and content providers to update WebApp content in a
controlled manner. Most establish a simple file management
system that assigns page-by-page update and editing
permissions for various types of WebApp content. Some
maintain a versioning system so that previous versions of
content can be achieved for historical purposes.

Representative Tools”

Content Management Tools Suite, developed by
inferactivetools.com (www.interactivetools. com/), is a
suite of confent management tools that focus on content
management for specific application domains (e.g.,
news articles, classified ads, real estate).

ektron-CMS300, developed by ekiron {www.ekiron.com),
is a svite of tools that provides content management

\capcbilities as well as Web development tools.

SorTwaRE ToOOLS

OmniUpdate, developed by WebsiteASP, Inc.
{(www.omniupdate.com), is a tool that allows
authorized content providers fo develop controlled
updates to specified WebApp content.

Tower IDM, developed by Tower Technologies
{www.towertech.com), is a document processing
system and content repository for managing all
forms of unstructured business information—
images,‘ forms,' computer-generoted reports;
statements and invoices; office documents; e-mail and
Web content.

Additional information on SCM and content management
tools for Web engineering can be found at one or more of
the following Web sites:

Web Developer’s Virtual Encyclopedia (www.wdlv.com),

WebDeveloper (www.webdeveloper.com),

Developer Shed (www.devshed.com), webknowhow.net
{www.webknowhow.net), or

WebReference (www.webreference.com).

J

27.4.4 Change Management

The workflow associated with change control for conventional software (Section
27.3.3) is generally too ponderous for Web engineering. It is unlikely that the change
request, change report, and engineering change order sequence can be achieved in
an agile manner that is acceptable for most WebApp development projects. How
then do we manage a continuous stream of changes requested for WebApp content

and functionality?

To implement effective change management within the “code and go” philoso-
phy that continues to dominate WebApp development, the conventional change
control process must be modified. Each change should be categorized into one of

four classes:

Class 1—a content or function change that corrects an error or enhances local

content or functionality.

Class 2—a content or function change that has impact on other content objects

or functional components.

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

794 PART FOUR MANAGING SOFTWARE PROJECTS

Ficure 27.7

Managing
changes for
WebApps

Class 1 change Class 4 change

Class 2 change Class 3 change

required
in related
objects

Further
evaluation
is required |OK to make

evaluation
is required | OK to make

" "Make changes
design, construct, test

Class 3—a content or function change that has broad impact across a WebApp
(e.g., major extension of functionality, significant enhancement or reduction in
content, major required changes in navigation).

Class 4—a major design change (e.g., a change in interface design or navigation
approach) that will be immediately noticeable to one or more categories of user.

Once the requested change has been categorized, it can be processed according to
the algorithm shown in Figure 27.7.

Referring to the figure, class 1 and 2 changes are treated informally and are han-
dled in an agile manner. For a class | change, the Web engineer evaluates the im-
pact of the change, but no external review or documentation is required. As the
change is made, standard check-in and check-out procedures are enforced by con-

CHAPTER 27 CHANGE MANAGEMENT 795

figuration repository tools. For class 2 changes, it is incumbent on the Web engineer
to review the impact of the change on related objects (or to ask other developers-re-
sponsible for those objects to do so). If the change can be made without requiring
significant changes to other objects, modification occurs without additional review
or documentation. If substantive changes are required, further evaluation and plan-
ning are necessary.

Class 3 and 4 changes are also treated in an agile manner, but some descriptive doc-
umentation and more formal review procedures are required. A change description—
describing the change and providing a brief assessment of the impact of the change—is
developed for class 3 changes. The description is distributed to all members of the Web
engineering team who review it to better assess its impact. A change description is also
developed for class 4 changes, but in this case, the review is conducted by all stake-

holders.
SOFTWARE TOOLS

ClearCase, developed by Rational {www.rational.com), is

Change Management

"
Q Objective: To assist Web engineers and

content developers in managing changes as
they are made to WebApp configuration objects.

Mechanics: Tools in this category were originally
developed for conventional software, but can be adapted
by Web engineers to make controlled changes to
WebApps.

Representative Tools®

a suite of tools that provides full configuration
management capabilities for WebApps.

PVCS, developed by Merant {www.merant.com), is a suite
of tools that provides full configuration management
capabilities for WebApps.

Source Integrity, developed by mks (www.mks.com), is a
SCM tool that can be integrated with selected
development environments.

ChangeMan WCM, developed by Serena (www.
serena.com), is a one of a suite of change

\ management tools that provide SCM capabilities. /

27.4.5 Version Control

As a WebApp evolves through a series of increments, a number of different versions
may exist at the same time. One version (the current operational WebApp) is avail-
able via the Internet for end-users; another version (the next WebApp increment)
may be in the final stages of testing prior to deployment; a third version is in devel-
opment and represents a major update in content, interface aesthetics, and func-
tionality. Configuration objects must be clearly defined so that each can be
associated with the appropriate version. In addition, control mechanisms must be

8 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

796

PART FOUR MANAGING SOFTWARE PROJECTS

established. Dreilinger [DRE99] discusses the importance of version (and change)
control when he writes:

In an uncontrolled site where multiple authors have access to edit and contribute, the po-
tential for conflict and problems arises—more so when these authors work from different
offices at different times of day and night. You may spend the day improving the file in-
dex.html for a customer. After you've made your changes, another developer who works
at home after hours, or in another office, may spend the night uploading their own newly
revised version of the file index.html, completely overwriting your work with no way to
get it back!

This situation should sound familiar to every software engineer as well as every Web
engineer. To avoid it, a version control process should be established.

1. A central repository for the WebApp project should be established. The reposi-
tory will hold current versions of all WebApp configuration objects (content,
functional components, and others).

2. Each Web engineer creates his or her own working folder. The folder contains
those objects that are being created or changed at any given time.

3. The clocks on all developer workstations should be synchronized. This is done
to avoid overwriting conflicts when two developers make updates that are
very close to one another in time.

4. As new configuration objects are developed or existing objects are changed, they
are imported into the central repository. The version control tool (see discus-
sion of CVS earlier in this chapter) will manage all check-in and check-out
functions from the working folders of each Web engineer.

5. As objects are imported or exported from the repository, an automatic, time-
stamped log message is made. This provides useful information for auditing
and can become part of an effective reporting scheme.

The version control tool maintains different versions of the WebApp and can revert
to an older version if required.

27.4.6 Auditing and Reporting

In the interest of agility, the auditing and reporting functions are deemphasized in
Web engineering work. However, they are not eliminated altogether. All objects that
are checked into or out of the repository are recorded in a log that can be reviewed
at any point in time. A complete log report can be created so that all members of the
Web engineering team have a chronology of changes over a defined period of time.
In addition, an automated e-mail notification (addressed to those developers and
stakeholders who have interest) can be sent every time an object is checked in or out
of the repository.

g 797

CHAPTER 27 CHANGE MANAGEMENT N
SCM Standards
The following list of SCM standards (extracted EIA CMB6-3 Configuration Identification
in part from www.12207.com) is reasonably EIA CMB6-4 Configuration Control
comprehensive: EIA CMB6-5 Textbook for Configuration Status
. Accounting
IEEE Standards sta.ndcrds.mee.org/cctulog/ EIA CMB7-1 Electronic Inferchange of
olis/ . . Configuration Management Data
IEEE 828 Software Configuration Management ¢ ¢ Military www-library.itsi.disa.niil
Plans o Standards '
IEEE 1042 Soﬁwor(-e Conflg?rohon Management 1 5\ STD-973 Configuration Management
ISO Standards www.iso.ch/iso/en/ MIL-HDBK-61 Configuration Management
ISOOnline.frontpage Guidance
ISO 10007-1995 quol(l:tZAManogement, Guidance Other standards
or

ISO/IEC 12207 Information Technology—Software
Life Cycle Processes

ISO/IEC TR 15271 Guide for ISO/IEC 12207

ISO/IEC TR 15846 Software Engineering—Software Life
Cycle Process—Configuration
Management for Software

EIA Standards www.eia.org/

EIA 649 National Consensus Standard for
Configuration Management

EIA CMB4-1A Configuration Management
Definitions for Digital Computer
Programs

EIA CMB4-2 Configuration Identification for
Digital Computer Programs

EIA CMB4-3 Computer Software Libraries

EIA CMB4-4 Configuration Change Control for

Digital Computer Programs
EIA CMB6-1C Configuration and Data
k Management References

DO-1788B

ESA PSS-05-09

AECL CE-1001-STD
rev.1

DOE SCM checklist

BS-6488

Best Practice—UK

CMIl

A Configuration Management Resource Guide provides
complementary information for those inferested in CM
processes and practice. It is available at

www.quality.org/config/cm-guide.html. /

@\

Guidelines for the Development of
Aviation Software

Guide to Software Configuration
Management

Standard for Software Engineering
of Safety Critical Software

cio.doe.gov/ITReform/sqse/
download/cmcklst.doc

British Std., Configuration
Management of Computer-Based
Systems

Office of Government Commerce:
www.ogc.gov.uk

Institute of CM Best Practices:
www.icmhg.com

Software configuration management is an umbrella activity that is applied through-
out the software process. SCM identifies, controls, audits, and reports modifications
that invariably occur while software is being developed and after it has been released
to a customer. All information produced as part of software engineering becomes
part of a software configuration. The configuration is organized in a manner that en-
ables orderly management of change.

798

PART FOUR MANAGING SOFTWARE PROJECTS

The software configuration is composed of a set of interrelated objects, also called
software configuration items, that are produced as a result of some software engi-
neering activity. In addition to documents, programs, and data, the development en-
vironment that is used to create software can also be placed under configuration
control. All SCIs are stored within a repository that implements mechanisms and
data structures to ensure data integrity, provides integration support for other soft-
ware tools, supports information sharing among all members of the software team,
and implements functions in support of version and change control.

Once a configuration object has been developed and reviewed, it becomes a base-
line. Changes to a baselined object result in the creation of a new version of that ob-
ject. The evolution of a program can be tracked by examining the revision history of
all configuration objects. Basic and composite objects form an object pool from
which versions are created. Version control is the set of procedures and tools for
managing the use of these objects.

Change control is a procedural activity that ensures quality and consistency as
changes are made to a configuration object. The change control process begins with
a change request, leads to a decision to make or reject the request for change, and
culminates with a controlled update of the SCI that is to be changed.

The configuration audit is an SQA activity that helps to ensure that quality is
maintained as changes are made. Status reporting provides information about each
change to those with a need to know.

Configuration management for Web engineering is similar in most respects to
SCM for conventional software. However, each of the core SCM tasks should be
streamlined to make it as lean as possible, and special provisions for content man-
agement must be implemented.

[BAB86] Babich, W.A., Software Configuration Management, Addison-Wesley, 1986.

[BAC98] Bach, J., “The Highs and Lows of Change Control,” Computer, vol. 31, no. 8, August
1998, pp. 113-115.

[BER80] Bersoff, E.H., V.D. Henderson, and S.G. Siegel, Software Configuration Management,
Prentice-Hall, 1980.

{BOI02] Boiko, B., Content Management Bible, Hungry Minds Publishing, 2002.

[CHO89] Choi, S.C., and W. Scacchi, “Assuring the Correctness of a Configured Software De-
scription,” Proc. 2nd Intl. Workshop on Software Configuration Management, ACM, Princeton,
NJ, October 1989, pp. 66-75.

[CVS02] Concurrent Versions System Web site, www.cvshome.org, 2002.

[DAR91] Dart, S., “Concepts in Configuration Management Systems,” Proc. Third International
Workshop on Software Configuration Management, ACM SIGSOFT, 1991, download from:
http://www.sei.cmu.edu/legacy/scm/abstracts/abscm_concepts.html.

[DAR99] Dart, S., “Change Management: Containing the Web Crisis,” Proc. Software Configura-
tion Management Symposium, Toulouse, France, 1999, available at http://www.perforce.
com/perforce/conf99/dart.html.

[DARO1] Dart, S., Spectrum of Functionality in Configuration Management Systems, Software En-
gineering Institute, 2001, available at http://www.sei.cmu.edu/legacy/scm/tech_rep/
TR11_90/TOC_TR11_90.html.

CHAPTER 27 CHANGE MANAGEMENT 799

[DRE99] Dreilinger, S., “CVS Version Control for Web Site Projects,” 1999, available at
http://www.durak.org/cvswebsites/howto-cvs/howto—cvs.html.

[FOR89] Forte, G., “Rally Round the Repository,” CASE Outlook, December 1989, pp. 5-27.

[GRI95] Criffen, J., “Repositories: Data Dictionary Descendant Can Extend Legacy Code Invest-
ment,” Application Development Trends, April 1995, pp. 65-71.

[GUS89] Gustavsson, A., “Maintaining the Evolution of Software Objects in an Integrated Envi-
ronment,” Proc. 2nd Intl. Workshop on Software Configuration Management, ACM, Princeton,
NJ, October 1989, pp. 114-117.

[HAR89] Harter, R., “Configuration Management,” HP Professional, vol. 3, no. 6, June 1989.

[IEE94} Software Engineering Standards, 1994 edition, IEEE Computer Society, 1994.

DACO2] Jacobson, 1., “A Resounding ‘Yes' to Agile Processes—But Also More,” Cutter IT Journal,
vol. 15, no. 1., January 2002, pp. 18-24.

[REI89] Reichenberger, C., “Orthogonal Version Management,” Proc. 2nd Intl. Workshop on Soft-
ware Configuration Management, ACM, Princeton, NJ, October 1989, pp. 137-140.

[SHA95} Sharon, D., and R. Bell, “Tools That Bind: Creating Integrated Environments,” JEEE Soft-
ware, March 1995, pp. 76-85.

[TAY85] Taylor, B., “A Database Approach to Configuration Management for Large Projects,”
Proc. Conf. Software Maintenance—1985, IEEE, November 1985, pp. 15-23.

L

27.1. Use UML aggregations or composites (Chapter 8) to describe the interrelationships
among the SCIs (configuration objects) listed in Section 27.1.4.

27.2. What are the four elements that exist when an effective SCM system is implemented? Dis-
cuss each briefly.

27.3. Discuss the reasons for baselines in your own words.

27.4. Assume that you're the manager of a small project. What baselines would you define for
the project, and how would you control them? :

27.5. What is the difference between a SCM audit and a formal technical review? Can their
functions be folded into one review? What are the pros and cons?

26.6. Research an existing SCM tool, and describe how it implements control for versions and
configuration objects in general.

27.7. Design a project database (repository) system that would enable a software engineer to
store, cross-reference, trace, update, and change, all important software configuration items.
How wouud the database handle different versions of the same program? Would source code be
handled differently than documentation? How will two developers be precluded from making
different changes to the same SCI at the same time?

27.8. Why is the First Law of System Engineering true? Provide specific examples for each of
the four fundamental reasons for change.

27.9. Develop a checklist for use during configuration audits.

27.10. Using Figure 27.5 as a guide, develop an even more detailed work breakdown for
change control. Describe the role of the CCA and suggest formats for the change request, the
change report, and the ECO.

27.11. Research an existing SCM tool and describe how it implements the mechanics of ver-
sion control. Alternatively, read two or three of the papers on SCM and describe the different
data structures and referencing mechanisms that are used for version control.

27.12. The relations <part-of> and <interrelated>represent simple relationships between
configuration objects. Describe five additional relationships that might be useful in the context
of a SCM repository.

800

PART FOUR MANAGING SOFTWARE PROJECTS

27.13. What is content management? Use the Web to research the features of a content man-
agement tool and provide a brief summary.

27.14. Briefly describe the differences between SCM for conventional software and SCM for
WebApps.

Lyon (Practical CM, Raven Publishing, 2003, available at www.configuration.org) has written a
comprehensive guide for CM professionals that includes pragmatic guidelines for implementing
every aspect of a configuration management system (updated yearly). Hass (Configuration Man-
agement: Principles and Practice, Addison-Wesley, 2002) and Leon (A Guide to Software Configu-
ration Management, Artech House, 2000) provide useful surveys of the subject. White and Clemm
(Software Configuration Management Strategies and Rational ClearCase, Addison-Wesley, 2000)
present SCM within the context of one of the more popular SCM tools.

Mikkelsen and Pherigo (Practical Software Configuration Management: The Latenight Devel-
oper’s Handbook, Allyn & Bacon, 1997) and Compton and Callahan (Configuration Management
for Software, VanNostrand-Reinhold, 1994) provide pragmatic tutorials on important SCM prac-
tices. Ben-Menachem (Software Configuration Management Guidebook, McGraw-Hill, 1994), and
Ayer and Patrinnostro (Software Configuration Management, McGraw-Hill, 1992) present good
overviews for those who need further introduction to the subject. Berlack (Software Configura-
tion Management, Wiley, 1992) presents a useful survey of SCM concepts, emphasizing the im-
portance of the repository and tools in the management of change. Babich [BAB86] provides an
abbreviated, yet effective treatment of pragmatic issues in software configuration management.
Arnold and Bohner (Software Change Impact Analysis, IEEE Computer Society Press, 1996) have
edited an anthology that discusses how to analyze the impact of change within complex
software-based systems.

Berczuk and Appleton (Software Configuration Management Patierns, Addison-Wesley, 2002)
present a variety of useful patterns that assist in understanding SCM and implementing effec-
tive SCM systems. Brown, et al. (Anti-Patterns and Patterns in Software Configuration Manage-
ment, Wiley, 1999) discuss the things not to do (anti-patterns) when implementing an SCM
process and then consider their remedies.

Buckley (Implementing Configuration Management, IEEE Computer Society Press, 1993) con-
siders configuration management approaches for all system elements—hardware, software,
and firmware—with detailed discussions of major CM activities. Rawlings (SCM for Network De-
velopment Environments, McGraw-Hill, 1994) considers the impact of SCM for software devel-
opment in a networked environment. Bays (Software Release Methodology, Prentice-Hail, 1999)
presents a collection of best practices for all activities that occur after changes are made to an
application.

As WebApps have become more dynamic, content management has become an essential
topic for Web engineers. Books by Addey and his colleagues (Content Management Systems,
Glasshaus, 2003), Boiko [BOI02], Hackos (Content Management for Dynamic Web Delivery, Wiley,
2002), Nakano (Web Content Management, Addison-Wesley, 2001) present worthwhile treat-
ments of the subject.

A wide variety of information sources on software configuration management is available on
the Internet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

